scholarly journals Crystal Chemistry of Birefringent Uvarovite Solid Solutions

Minerals ◽  
2019 ◽  
Vol 9 (7) ◽  
pp. 395 ◽  
Author(s):  
Sytle M. Antao ◽  
Jeffrey J. Salvador

The crystal chemistry of five optically anisotropic uvarovite samples from different localities (California, Finland, Russia, and Switzerland) were studied with electron-probe microanalysis (EPMA) and the Rietveld method. Monochromatic synchrotron high-resolution powder X-ray diffraction (HRPXRD) data were used, and Rietveld refinement was carried out with the cubic space group, I a 3 ¯ d . The general formula for garnet is [8]X3[6]Y2[4]Z3[4]O12. Uvarovite has the ideal formula, Ca3Cr2Si3O12, which may be written as Ca3{Cr,Al,Fe}Σ2[Si3O12] because of solid solutions. HRPXRD traces show multiple cubic garnet phases in each sample that has a heterogeneous chemical composition. The optical and back-scattered electron (BSE) images and elemental maps contain lamellar and concentric zoning as well as patchy intergrowths. With increasing a unit-cell parameter for uvarovite solid solutions, the Z–O distance remains constant, and the average <X–O> distance increases slightly in response to the Cr3+ ⇔ Al3+ cation substitution in the Y site. The Y–O distance increases most because Cr3+ (radius = 0.615 Å) is larger than Al3+ (radius = 0.545 Å) cations. The Fe3+ (radius = 0.645 Å) cation is also involved in this substitution. Structural mismatch between the cubic garnet phases in the samples gives rise to strain-induced optical anisotropy.

Minerals ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 767
Author(s):  
Sytle M. Antao

Two isotropic grossular (ideally Ca3Al2Si3O12) samples from (1) Canada and (2) Tanzania, three optically anisotropic grossular samples (3, 4, 5) from Mexico, and one (6) anisotropic sample from Italy were studied. The crystal structure of the six samples was refined in the cubic space group Ia3¯d, using monochromatic synchrotron high-resolution powder X-ray diffraction (HRPXRD) data and the Rietveld method. The compositions of the samples were obtained from electron microprobe analyses (EPMA). The HRPXRD traces show a single cubic phase for two isotropic samples, whereas the four anisotropic samples contain two different cubic phases that were also resolved using X-ray elemental line scans, backscattered electron (BSE) images, and elemental maps. Structural mismatch from two cubic phases intergrown in the birefringent samples gives rise to strain-induced optical anisotropy. Considering the garnet general formula, [8]X3[6]Y2[4]Z3[4]O12, the results of this study show that with increasing unit-cell parameter, the Y-O distance increases linearly and rather steeply, the average <X-O> distance increases just slightly in response to substitution mainly on the Y site, while the Z-O distance remains nearly constant. The X and Z sites in grossular contain Ca and Si atoms, respectively; both sites show insignificant substitutions by other atoms, which is supported by a constant Z-O distance and only a slight increase in the average <X-O> distance. The main cation exchange is realized in the Y site, where Fe3+ (ionic radius = 0.645 Å) replaces Al3+ (ionic radius = 0.545 Å), so the Y-O distance increases the most.


2017 ◽  
Vol 81 (2) ◽  
pp. 369-381 ◽  
Author(s):  
F. Cámara ◽  
E. Sokolova ◽  
Y. A. Abdu ◽  
F. C. Hawthorne ◽  
T. Charrier ◽  
...  

AbstractFogoite-(Y), Na3Ca2Y2Ti(Si2O7)2OF3, is a new mineral from the Lagoa do Fogo, São Miguel Island, the Azores. It occurs in cavities as highly elongated (on [001]) prisms, up to 2000 μm long and 50 μm× 50 μm in cross-section, associated with sanidine, astrophyllite, fluornatropyrochlore, ferrokentbrooksite, quartz and ferro-katophorite. Crystals are generally transparent and colourless, with vitreous lustre, occasionally creamy white. Fogoite-(Y) has a white streak, splintery fracture and very good {100} cleavage. Mohs hardness is ∼5. Dcalc. = 3.523 g/cm3. It is biaxial (+) with refractive indices (λ = 590 nm) α = 1.686(2), β = 1.690(2), γ = 1.702(5); 2Vmeas. = 57(1)° and 2Vcalc. = 60°. It is nonpleochroic. Fogoite-(Y) is triclinic, space group P1, a = 9.575(6), b = 5.685(4), c = 7.279(5) Å, α = 89.985(6), β = 100.933(4), γ = 101.300(5)°, V = 381.2 (7) Å3. The six strongest reflections in the powder X-ray diffraction data [d (Å), I, (hkl)] are: 2.954, 100, (1̄1̄2, 3̄10); 3.069, 42, (300, 01̄2); 2.486, 24, (310, 21̄2); 3.960, 23, (1̄1̄1, 2̄10); 2.626, 21, (2̄20); 1.820, 20, (1̄04). Electron microprobe analysis gave the following empirical formula calculated on 18 (O + F) (Na2.74Mn0.15)∑2.89Ca2[Y1.21(La0.01Ce0.03Nd0.03Sm0.02Gd0.08Dy0.08Er0.05Yb0.04Lu0.01)∑0.35Mn0.16Zr0.11Na0.09Fe0.072+Ca0.01]∑2(Ti0.76Nb0.23Ta0.01)∑1(Si4.03O14)O1.12F2.88, Z = 1. The crystal structure was refined on a twinnedcrystal to R1 = 2.81% on the basis of 2157 unique reflections (Fo > 4σFo) and is a framework of TS (Titanium Silicate) blocks, which consist of HOH sheets (H – heteropolyhedral, O – octahedral) parallel to (100). In the O sheet, the the [6]MO(1) site is occupied mainly by Ti, <MO(1)–ϕ> = 1.980 Å, and the [6]MO(2) and [6]MO(3) sites are occupied by Na and Na plus minor Mn, <MO(2)–ϕ>= 2.490 Å and <MO(3)–ϕ> = 2.378 Å. In the H sheet, the two [4]Si sites are occupied by Si, with <Si–O> = 1.623 Å; the [6]MH site is occupied by Y and rare-earth elements (Y > REE), with minor Mn, Zr, Na, Fe2+ and Ca, <MH–ϕ> = 2.271 Å and the [6]AP site is occupied by Ca, <AP–ϕ> = 2.416 Å. The MH and AP octahedra and Si2O7 groups constitute the H sheet. The ideal compositions of the O and two H sheets are Na3Ti(OF)F2 and Y2Ca2(Si2O7)2 apfu. Fogoite-(Y) is isostructural with götzenite and hainite. The mineral is named after the type locality, the Fogo volcano in the Azores.


2020 ◽  
Vol 62 (6) ◽  
pp. 74-79
Author(s):  
Olga A. Firsova ◽  
◽  
Elena M. Filonenko ◽  
Yulia A. Lupitskaya ◽  
Hurshid N. Bozorov ◽  
...  

The research of tungsten-antimony crystalline acid (TACA) structural transformations in the condition of ion-exchange and thermolysis of its substituted M+, H+-forms (M+ – Li, Na, K, Ag) were conducted. The data of thermogravimetric and qualitative X-ray phase analyses made it possible to conclude that the thermolysis of TACA and its derivatives proceeds in a wide temperature range from 300 to 1150 K being accompanied by the removal of crystalline water molecules with the formation of phases mixture containing complex antimony oxides of the ( -,  - Sb2O4) modification and WO3. It was shown that compounds based on hydrated forms of monovalent metal antimonates-tungstates are stable up to 1023 K with a pyrochlore-type structure. For pyrochlore-like phases, a monotonic dependence of unit cell parameter a on ion-exchange degree α and the ionic radius of metals r was revealed indicating the formation of solid solutions Мх(Н3О)1–хWSbO6 nН2О (M+ – Li, Na, K, Ag; 0.0≤х<1.0; 0.0≤n<2.0) with a limited range of solubility from the crystal chemistry point of view. Within the framework of the Fd-3m space group, based on the data of X-ray diffraction analysis (Rietveld method), the structural characteristics of TACA and its substituted M+, H+-forms were refined, and a model for populating the corresponding metal ions by crystallographic positions of the pyrochlore-type structure was proposed. Using a complex of physicochemical methods (thermogravimetric, X-ray diffraction analyses and IR spectroscopy), a correlation between the composition of the obtained compounds, structural disorder, and ion-exchange properties were determined. According to the data of thermogravimetry and IR spectroscopy, it follows that the degree of compounds hydration analyzed depends on the nature of the alkaline ion. This allows to conclude that lithium and sodium ions are located in 16d– positions, dragging neutral water molecules into the structure occupying 8b-positions. In this case, potassium ions can partially occupy both 16d- and 8b-positions of the structure.


Minerals ◽  
2020 ◽  
Vol 10 (5) ◽  
pp. 467 ◽  
Author(s):  
Luca Bindi ◽  
John A. Jaszczak

The new mineral richardsite occurs as overgrowths of small (50–400 μm) dark gray, disphenoidal crystals with no evident twinning, but epitaxically oriented on wurtzite–sphalerite crystals from the gem mines near Merelani, Lelatema Mountains, Simanjiro District, Manyara Region, Tanzania. Associated minerals also include graphite, diopside, and Ge,Ga-rich wurtzite. It is brittle, dark gray in color, and has a metallic luster. It appears dark bluish gray in reflected plane-polarized light, and is moderately bireflectant. It is distinctly anisotropic with violet to light-blue rotation tints with crossed polarizers. Reflectance percentages for Rmin and Rmax in air at the respective wavelengths are 23.5, 25.0 (471.1 nm); 27.4, 28.9 (548.3 nm); 28.1, 29.4 (586.6 nm); 27.7, 28.9 (652.3 nm). Richardsite does not show pleochroism, internal reflections, or optical indications of growth zonation. Electron microprobe analyses determine an empirical formula, based on 8 apfu, as (Zn1.975Cu0.995Ga0.995Fe0.025Mn0.010Ge0.005Sn0.005)Σ4.010S3.990, while its simplified formula is (Zn,Cu)2(Cu,Fe,Mn)(Ga,Ge,Sn)S4, and the ideal formula is Zn2CuGaS4. The crystal structure of richardsite was investigated using single-crystal and powder X-ray diffraction. It is tetragonal, with a = 5.3626(2) Å, c = 10.5873(5) Å, V = 304.46(2) Å3, Z = 2, and a calculated density of 4.278 g·cm−3. The four most intense X-ray powder diffraction lines [d in Å (I/I0)] are 3.084 (100); 1.882 (40); 1.989 (20); 1.614 (20). The refined crystal structure (R1 = 0.0284 for 655 reflections) and obtained chemical formula indicate that richardsite is a new member of the stannite group with space group I 4 ¯ 2 m . Its structure consists of a ccp array of sulfur atoms tetrahedrally bonded with metal atoms occupying one-half of the ccp tetrahedral voids. The ordering of the metal atoms leads to a sphalerite(sph)-derivative tetragonal unit-cell, with a ≈ asph and c ≈ 2asph. The packing of S atoms slightly deviates from the ideal, mainly due to the presence of Ga. Using 632.8-nm wavelength laser excitation, the most intense Raman response is a narrow peak at 309 cm−1, with other relatively strong bands at 276, 350, and 366 cm−1, and broader and weaker bands at 172, 676, and 722 cm−1. Richardsite is named in honor of Dr. R. Peter Richards in recognition of his extensive research and writing on topics related to understanding the genesis of the morphology of minerals. Its status as a new mineral and its name have been approved by the Commission of New Minerals, Nomenclature and Classification of the International Mineralogical Association (No. 2019-136).


2013 ◽  
Vol 28 (4) ◽  
pp. 281-288 ◽  
Author(s):  
Sytle M. Antao

The cause of birefringence in several garnet-group minerals with general chemical formula, [8]X3[6]Y2[4]Z3[4]O12, which was observed over 100 years ago, is unknown, although many different reasons were proposed, including symmetry lower than cubic. In this study, electron microprobe analyses (EMPA) were obtained for a Ti-rich andradite, ideally Ca3(Fe23+)Si3O12, from Magnet Cove, Arkansas, USA, and the results show that the sample is inhomogeneous with two distinct compositions. The crystal structure was refined by the Rietveld method, cubic space group $Ia\overline 3 d$, and monochromatic synchrotron high-resolution powder X-ray diffraction (HRPXRD) data, which shows a mixture of three distinct cubic phases that are intergrown together and cause birefringence because of strain arising from small structural mismatch. This mixture of three cubic phases was not observed by any other experimental technique. These results have many implications, including garnet phase transitions from cubic to lower symmetry in the mantle, which has important geophysical consequences.


2021 ◽  
pp. 1-6
Author(s):  
Mariana M. V. M. Souza ◽  
Alex Maza ◽  
Pablo V. Tuza

In the present work, LaNi0.5Ti0.45Co0.05O3, LaNi0.45Co0.05Ti0.5O3, and LaNi0.5Ti0.5O3 perovskites were synthesized by the modified Pechini method. These materials were characterized using X-ray fluorescence, scanning electron microscopy, and powder X-ray diffraction coupled to the Rietveld method. The crystal structure of these materials is orthorhombic, with space group Pbnm (No 62). The unit-cell parameters are a = 5.535(5) Å, b = 5.527(3) Å, c = 7.819(7) Å, V = 239.2(3) Å3, for the LaNi0.5Ti0.45Co0.05O3, a = 5.538(6) Å, b = 5.528(4) Å, c = 7.825(10) Å, V = 239.5(4) Å3, for the LaNi0.45Co0.05Ti0.5O3, and a = 5.540(2) Å, b = 5.5334(15) Å, c = 7.834(3) Å, V = 240.2(1) Å3, for the LaNi0.5Ti0.5O3.


Catalysts ◽  
2020 ◽  
Vol 10 (6) ◽  
pp. 640
Author(s):  
Hideaki Sasaki ◽  
Keisuke Sakamoto ◽  
Masami Mori ◽  
Tatsuaki Sakamoto

CeO2-based solid solutions in which Pd partially substitutes for Ce attract considerable attention, owing to their high catalytic performances. In this study, the solid solution (Ce1−xPdxO2−δ) with a high Pd content (x ~ 0.2) was synthesized through co-precipitation under oxidative conditions using molten nitrate, and its structure and thermal decomposition were examined. The characteristics of the solid solution, such as the change in a lattice constant, inhibition of sintering, and ionic states, were examined using X-ray diffraction (XRD), scanning electron microscopy–energy-dispersive X-ray spectroscopy (SEM−EDS), transmission electron microscopy (TEM)−EDS, and X-ray photoelectron spectroscopy (XPS). The synthesis method proposed in this study appears suitable for the easy preparation of CeO2 solid solutions with a high Pd content.


Sign in / Sign up

Export Citation Format

Share Document