scholarly journals An Overview of Structurally Modified Glycyrrhetinic Acid Derivatives as Antitumor Agents

Molecules ◽  
2017 ◽  
Vol 22 (6) ◽  
pp. 924 ◽  
Author(s):  
Bing Xu ◽  
Gao-Rong Wu ◽  
Xin-Yu Zhang ◽  
Meng-Meng Yan ◽  
Rui Zhao ◽  
...  

Glycyrrhetinic Acid (GA), a triterpenoid aglycone component of the natural product glycyrrhizinic acid, was found to possess remarkable anti-proliferative and apoptosis-inducing activity in various cancer cell lines. Though GA was not as active as other triterpenes, such as betulinic acid and oleanolic acid, it could trigger apoptosis in tumor cells and it can be obtained easily and cheaply, which has stimulated scientific interest in using GA as a scaffold to synthesize new antitumor agents. The structural modifications of GA reported in recent decades can be divided into four groups, which include structural modifications on ring-A, ring-C, ring-E and multiple ring modifications. The lack of a comprehensive and recent review on this topic prompted us to gather more new information. This overview is dedicated to summarizing and updating the structural modification of GA to improve its antitumor activity published between 2005 and 2016. We reviewed a total of 210 GA derivatives that we encountered and compiled the most active GA derivatives along with their activity profile in different series. Furthermore, the structure activity relationships of these derivatives are briefly discussed. The included information is expected to be of benefit to further studies of structural modifications of GA to enhance its antitumor activity.

Molecules ◽  
2021 ◽  
Vol 26 (10) ◽  
pp. 3041
Author(s):  
Xiaohan Hu ◽  
Sheng Tang ◽  
Feiyi Yang ◽  
Pengwu Zheng ◽  
Shan Xu ◽  
...  

Two series of olmutinib derivatives containing an acrylamide moiety were designed and synthesized, and their IC50 values against cancer cell lines (A549, H1975, NCI-H460, LO2, and MCF-7) were evaluated. Most of the compounds exhibited moderate cytotoxic activity against the five cancer cell lines. The most promising compound, H10, showed not only excellent activity against EGFR kinase but also positive biological activity against PI3K kinase. The structure–activity relationship (SAR) suggested that the introduction of dimethylamine scaffolds with smaller spatial structures was more favorable for antitumor activity. Additionally, the substitution of different acrylamide side chains had different effects on the activity of compounds. Generally, compounds H7 and H10 were confirmed as promising antitumor agents.


Author(s):  
Kai-Xia Zhang ◽  
Peng-Ru Wang ◽  
Fei Chen ◽  
Xi-Jing Qian ◽  
Lin Jia ◽  
...  

Background: Licorice is widely used as a hepatoprotective herb for thousands of years in Traditional Chinese Medicine, and its main chemical constituent glycyrrhizin (GL) is used as a treatment for chronic hepatitis in Japan for over 20 years. 18β-Glycyrrhetinic acid (GA) is the main active metabolite of GL. Objective: Series of GA derivatives were designed and synthesized, and their anti-HCV activities were screened to investigate structure-activity relationship (SAR). Besides, their in-silico ADMET properties were analyzed to search for promising lead compound for further identification of anti-HCV terpenoid candidate. Methods: GA derivatives were synthesized via reactions of oxidation, oxime, rearrangement, esterification and acylation, etc. In vitro anti-HCV activity of derivatives was tested on the HCV cell culture (HCVcc) system. In-silico ADMET properties analysis were performed via “pkCSM” and “SwissADME” platforms. Results: Eighteen GA derivatives were synthesized and their structures were confirmed by MS and NMR spectrums. All compounds exhibited superior HCV inhibitory activity to that of GA. Compound 2 possessed the most potent anti-HCV activity with IC50 value of 0.79 μM, which is nearly 58 times potent than SA (a previously reported potent anti-HCV terpenoids) and >200 times than GA. SAR revealed the introduction of 3-oxo, short-chain (C1-C3) aliphatic alcohols or cyclic aliphatic amines is conducive to improving anti-HCV activity. In-silico ADMET prediction demonstrated most of the potent compounds possessed favorable ADMET properties. Conclusion: Structural modification of GA at 3-position and 30-position is an effective approach to searching for potent anti-HCV agents. Compound 2, with the most potent anti-HCV activity and favorable in-silico ADMET properties, is a promising lead compound for further identification of anti-HCV terpenoid candidate.


2020 ◽  
Vol 20 (5) ◽  
pp. 369-395 ◽  
Author(s):  
Xiaobo Huang ◽  
Hui Xu

Cytisine is a quinolizidine alkaloid isolated from various Leguminosae plants. Cytisine and its derivatives exhibit a broad range of biological properties, such as smoking cessation aid, antidepressant, neuroprotective, nootropic, anticancer, antiviral, antiparasitic, antidiabetic, insecticidal, and nematicidal activities. In this review, the progress of cytisine and its derivatives in regard to bioactivities, total synthesis, structural modifications focusing on their N-12 position and lactam ring is reported. Additionally, the structure-activity relationships of cytisine and its derivatives are also discussed.


ChemInform ◽  
2010 ◽  
Vol 33 (17) ◽  
pp. no-no
Author(s):  
L. A. Baltina ◽  
Yu. I. Murinov ◽  
A. F. Ismagilova ◽  
V. A. Davydova ◽  
F. S. Zarudii ◽  
...  

2019 ◽  
Vol 23 (5) ◽  
pp. 503-516 ◽  
Author(s):  
Qiang Zhang ◽  
Xude Wang ◽  
Liyan Lv ◽  
Guangyue Su ◽  
Yuqing Zhao

Dammarane-type ginsenosides are a class of tetracyclic triterpenoids with the same dammarane skeleton. These compounds have a wide range of pharmaceutical applications for neoplasms, diabetes mellitus and other metabolic syndromes, hyperlipidemia, cardiovascular and cerebrovascular diseases, aging, neurodegenerative disease, bone disease, liver disease, kidney disease, gastrointestinal disease and other conditions. In order to develop new antineoplastic drugs, it is necessary to improve the bioactivity, solubility and bioavailability, and illuminate the mechanism of action of these compounds. A large number of ginsenosides and their derivatives have been separated from certain herbs or synthesized, and tested in various experiments, such as anti-proliferation, induction of apoptosis, cell cycle arrest and cancer-involved signaling pathways. In this review, we have summarized the progress in structural modification, shed light on the structure-activity relationship (SAR), and offered insights into biosynthesis-structural association. This review is expected to provide a preliminary guide for the modification and synthesis of ginsenosides.


2019 ◽  
Vol 16 (6) ◽  
pp. 462-467
Author(s):  
Songtao Li ◽  
Hongling Zhao ◽  
Zhifeng Yin ◽  
Shuhua Deng ◽  
Yang Gao ◽  
...  

A series of new phenanthrene-based tylophorine derivatives (PBTs) were synthesized in good yield and their structures were characterized by 1H-NMR spectroscopy and ESI MS. In vitro antitumor activity of these compounds against five human carcinoma cell lines, including HCT116 (colorectal), BGC-823 (gastric), HepG-2 (hepatic), Hela (cervical) and H460 (lung) cells, was evaluated by MTT assay. Among these PBTs, compound 6b showed the highest antitumor activities against HCT116 and HepG-2 cell lines with IC50 values of 6.1 and 6.4 μM, respectively, which were comparable to that of adriamycin hydrochloride. The structure-activity relationship of these compounds was also discussed based on the results of their antitumor activity.


Sign in / Sign up

Export Citation Format

Share Document