scholarly journals Effect of Pinocembrin Isolated from Mexican Brown Propolis on Diabetic Nephropathy

Molecules ◽  
2018 ◽  
Vol 23 (4) ◽  
pp. 852 ◽  
Author(s):  
Jessica Granados-Pineda ◽  
Norma Uribe-Uribe ◽  
Patricia García-López ◽  
María Ramos-Godinez ◽  
J. Rivero-Cruz ◽  
...  

Propolis is a resinous beehive product that has been used worldwide in traditional medicine to prevent and treat colds, wounds, rheumatism, heart disease and diabetes. Diabetic nephropathy is the final stage of renal complications caused by diabetes and for its treatment there are few alternatives. The present study aimed to determine the chemical composition of three propolis samples collected in Chihuahua, Durango and Zacatecas and to evaluate the effect of pinocembrin in a model of diabetic nephropathy in vivo. Previous research demonstrated that propolis of Chihuahua possesses hypoglycemic and antioxidant activities. Two different schemes were assessed, preventive (before renal damage) and corrective (once renal damage is established). In the preventive scheme, pinocembrin treatment avoids death of the rats, improves lipid profile, glomerular filtration rate, urinary protein, avoid increases in urinary biomarkers, oxidative stress and glomerular basement membrane thickness. Whereas, in the corrective scheme, pinocembrin only improves lipid profile without showing improvement in any other parameters, even pinocembrin exacerbated the damage. In conclusion, pinocembrin ameliorates diabetic nephropathy when there is no kidney damage but when it is already present, pinocembrin accelerates kidney damage.

2020 ◽  
Vol 21 (12) ◽  
pp. 4225
Author(s):  
Lucas Opazo-Ríos ◽  
Anita Plaza ◽  
Yenniffer Sánchez Matus ◽  
Susana Bernal ◽  
Laura Lopez-Sanz ◽  
...  

Diabetic nephropathy (DN) is a multifactorial disease characterized by hyperglycemia and close interaction of hemodynamic, metabolic and inflammatory factors. Nuclear factor-κB (NF-κB) is a principal matchmaker linking hyperglycemia and inflammation. The present work investigates the cell-permeable peptide containing the inhibitor of kappa B kinase γ (IKKγ)/NF-κB essential modulator (NEMO)-binding domain (NBD) as therapeutic option to modulate inflammation in a preclinical model of type 2 diabetes (T2D) with DN. Black and tan, brachyuric obese/obese mice were randomized into 4 interventions groups: Active NBD peptide (10 and 6 µg/g body weight); Inactive mutant peptide (10 µg/g); and vehicle control. In vivo/ex vivo fluorescence imaging revealed efficient delivery of NBD peptide, systemic biodistribution and selective renal metabolization. In vivo administration of active NBD peptide improved albuminuria (>40% reduction on average) and kidney damage, decreased podocyte loss and basement membrane thickness, and modulated the expression of proinflammatory and oxidative stress markers. In vitro, NBD blocked IKK-mediated NF-κB induction and target gene expression in mesangial cells exposed to diabetic-like milieu. These results constitute the first nephroprotective effect of NBD peptide in a T2D mouse model that recapitulates the kidney lesions observed in DN patients. Targeting IKK-dependent NF-κB activation could be a therapeutic strategy to combat kidney inflammation in DN.


Endocrinology ◽  
2014 ◽  
Vol 155 (12) ◽  
pp. 4665-4675 ◽  
Author(s):  
Laura A. Maile ◽  
Walker H. Busby ◽  
Katherine A. Gollahon ◽  
William Flowers ◽  
Nikol Garbacik ◽  
...  

Hyperglycemia stimulates secretion of αVβ3 ligands from vascular cells, including endothelial cells, resulting in activation of the αVβ3 integrin. This study determined whether blocking ligand occupancy of αVβ3 would inhibit the development of diabetic nephropathy. Ten diabetic pigs received an F(ab)2 fragment of an antibody directed against the extracellular domain of the β3-subunit, and 10 received a control IgG F(ab)2 for 18 weeks. Nondiabetic pigs excreted 115 ± 50 μg of protein/mg creatinine compared with control F(ab)2-treated diabetic animals (218 ± 57 μg/mg), whereas diabetic animals treated with the anti-β3 F(ab)2 excreted 119 ± 55 μg/mg (P < .05). Mesangial volume/glomerular volume increased to 21 ± 2.4% in control-treated diabetic animals compared with 14 ± 2.8% (P < .01) in animals treated with active antibody. Diabetic animals treated with control F(ab)2 had significantly less glomerular podocin staining compared with nondiabetic animals, and this decrease was attenuated by treatment with anti-β3 F(ab)2. Glomerular basement membrane thickness was increased in the control, F(ab)2-treated diabetic animals (212 ± 14 nm) compared with nondiabetic animals (170 ± 8.8 nm), but it was unchanged (159.9 ± 16.4 nm) in animals receiving anti-β3 F(ab)2. Podocyte foot process width was greater in control, F(ab)2-treated, animals (502 ± 34 nm) compared with animals treated with the anti-β3 F(ab)2 (357 ± 47 nm, P < .05). Renal β3 tyrosine phosphorylation decreased from 13 934 ± 6437 to 6730 ± 1524 (P < .01) scanning units in the anti-β3-treated group. We conclude that administration of an antibody that inhibits activation of the β3-subunit of αVβ3 that is induced by hyperglycemia attenuates proteinuria and early histologic changes of diabetic nephropathy, suggesting that it may have utility in preventing the progression of this disease complication.


2008 ◽  
Vol 294 (4) ◽  
pp. F748-F757 ◽  
Author(s):  
Grzegorz Piecha ◽  
Gabor Kokeny ◽  
Kumiko Nakagawa ◽  
Nadezda Koleganova ◽  
Aman Geldyyev ◽  
...  

Patients with renal insufficiency develop secondary hyperparathyroidism. Monotherapy with active vitamin D or calcimimetics ameliorates secondary hyperparathyroidism. We compared kidney damage in subtotally nephrectomized (SNX) rats treated with active vitamin D (calcitriol) or the calcimimetic R-568. Male Sprague-Dawley SNX and sham-operated (sham-op) rats were randomized into the following treatment groups: SNX + R-568, SNX + calcitriol, SNX + vehicle, sham-op + R-568, sham-op + calcitriol, and sham-op + vehicle. Albuminuria and blood pressure were monitored and kidneys were examined using morphometry, immunohistochemistry, quantitative RT-PCR, and in situ hybridization. Parathyroid hormone concentrations were lowered to the same extent by the two interventions, although phosphorus and the calcium-phosphorus product were reduced only by R-568 treatment. SNX rats developed marked albuminuria, which was significantly reduced in ad libitum- and pair-fed animals treated with R-568 and animals treated with calcitriol. Mean glomerular volume (6.05 ± 1.46 vs. 2.70 ± 0.91 mm3), podocyte volume (831 ± 127 vs. 397 ± 67 μm3), the degree of foot process fusion (mean width of foot processes = 958 ± 364 vs. 272 ± 35 nm), and glomerular basement membrane thickness (244 ± 6 vs. 267 ± 23 nm), as well as desmin staining, were significantly higher in vehicle-treated SNX than sham-operated animals. These changes were ameliorated with R-568 and calcitriol. In SNX, as well as sham-operated, animals, expression of the calcium-sensing receptor (protein and mRNA) was upregulated by treatment with the calcimimetic, but not calcitriol. Calcitriol and R-568 were similarly effective in ameliorating kidney damage.


2010 ◽  
Vol 299 (1) ◽  
pp. F99-F111 ◽  
Author(s):  
Youli Wang ◽  
Kathleen Heilig ◽  
Thomas Saunders ◽  
Andrew Minto ◽  
Dilip K. Deb ◽  
...  

Previous work identified an important role for hyperglycemia in diabetic nephropathy (The Diabetes Control and Complications Trial Research Group. N Engl J Med 329: 977–986, 1993; UK Prospective Diabetes Study Group. Lancet 352: 837–853, 1998), and increased glomerular GLUT1 has been implicated. However, the roles of GLUT1 and intracellular glucose have not been determined. Here, we developed transgenic GLUT1-overexpressing mice (GT1S) to characterize the roles of GLUT1 and intracellular glucose in the development of glomerular disease without diabetes. GLUT1 was overexpressed in glomerular mesangial cells (MC) of C57BL6 mice, a line relatively resistant to diabetic nephropathy. Blood pressure, blood glucose, glomerular morphometry, matrix proteins, cell signaling, transcription factors, and selected growth factors were examined. Kidneys of GT1S mice overexpressed GLUT1 in glomerular MCs and small vessels, rather than renal tubules. GT1S mice were neither diabetic nor hypertensive. Glomerular GLUT1, glucose uptake, mean capillary diameter, and mean glomerular volume were all increased in the GT1S mice. Moderately severe glomerulosclerosis (GS) was established by 26 wk of age in GT1S mice, with increased glomerular type IV collagen and fibronectin. Modest increases in glomerular basement membrane thickness and albuminuria were detected with podocyte foot processes largely preserved, in the absence of podocyte GLUT1 overexpression. Activation of glomerular PKC, along with increased transforming growth factor-β1, VEGFR1, VEGFR2, and VEGF were all detected in glomeruli of GT1S mice, likely contributing to GS. The transcription factor NF-κB was also activated. Overexpression of glomerular GLUT1, mimicking the diabetic GLUT1 response, produced numerous features typical of diabetic glomerular disease, without diabetes or hypertension. This suggested GLUT1 may play an important role in the development of diabetic GS.


Sign in / Sign up

Export Citation Format

Share Document