scholarly journals Triorganotin Derivatives Induce Cell Death Effects on L1210 Leukemia Cells at Submicromolar Concentrations Independently of P-glycoprotein Expression

Molecules ◽  
2018 ◽  
Vol 23 (5) ◽  
pp. 1053 ◽  
Author(s):  
Viera Bohacova ◽  
Mario Seres ◽  
Lucia Pavlikova ◽  
Szilvia Kontar ◽  
Martin Cagala ◽  
...  
2008 ◽  
Vol 108 (3) ◽  
pp. 824-832 ◽  
Author(s):  
Susanne U. Mertens-Talcott ◽  
Susan S. Percival ◽  
Stephen T. Talcott

2021 ◽  
Author(s):  
Nitika Pradhan ◽  
Antara Garai ◽  
Bratati Patra ◽  
Sanjib Kar ◽  
Prasanta K. Maiti

An oxo(corrolato)chromium(V) complex selectively kills leukemia cells. However, this complex did not induce cell death in primary non-cancer cells. It has been observed that oxo(corrolato)chromium(V) complex induced cell death is...


Blood ◽  
2015 ◽  
Vol 126 (23) ◽  
pp. 4162-4162
Author(s):  
Manoj K. Kashyap ◽  
Carlos I. Amaya-Chanaga ◽  
Deepak Kumar ◽  
Michael Y. Choi ◽  
Laura Z. Rassenti ◽  
...  

Abstract Chronic lymphocytic leukemia (CLL) is the most common type of leukemia in adults in the Western world. This leukemia is not curable and resistance to therapy is promoted by factors present in the tumor microenvironment including the chemokine CXCL12 (SDF-1), which interacts with its receptor CXCR4 and is thought to promote cancer cell survival. Here we explored the therapeutic potential of blocking CXCL12-CXCR4 interactions using PF-06747143, a humanized IgG1 antibody specific for CXCR4, which is expressed at high levels by CLL cells. Using primary leukemia cells from CLL patients, we found that PF-06747143 inhibited CXCL12-induced cell migration and blocked cytoskeletal changes via F-actin polymerization similar to AMD-3100 (Mozobil, a small molecule inhibitor of CXCR4). In addition, PF-06747143 induced apoptosis on CLL cells cultured alone or in the presence of human bone marrow-derived stromal cells (stroma-NK-tert). The pro-apoptotic activity of PF-06747143 was independent of high-risk prognostic factors including IGHV mutation status, ZAP-70 expression or TP53 mutation / 17p-deletion. Interestingly, AMD-3100, which binds and inhibits signaling through CXCR4, did not induce cell death in CLL or any of the cell lines tested. PF-06747143 did not induce apoptosis on normal B and T cells, and the ability of this anti-CXCR4 antibody to induce cell death on CLL cells appeared to be dependent on the crosslinking of CXCR4. This was supported by the fact that a Fab only fragment derived from PF-06747143 did not induce apoptosis despite of its high binding affinity for CXCR4. We observed that PF-06747143 induced complement-dependent cytotoxicity (CDC) and antibody-dependent cellular cytotoxicity (ADCC) in CLL cells. However, this antibody did not induce caspase activation but rather its cell death activity appeared to be dependent on the production of reactive oxygen species (ROS) in leukemia cells. This effect was similar to that observed with other ROS dependent antibodies such as obinutuzumab (Gazyva). ROS induction was observed with PF-06747143, but not its Fab derived fragment and preceded apoptosis suggesting that this is critical component of its mechanism of action. We evaluated synergism of PF-06747143 with other CLL therapeutic agents and observed that this antibody synergized with fludarabine, bendamustine, ibrutinib and rituximab in the majority of CLL patient samples tested. In summary, our studies showed that PF-06747143, a CXCR4 IgG1 antibody is a potent inhibitor of the CXCR4-CXCL12 pathway and induces cell death primarily in CLL cells but not in normal lymphocytes. The cytotoxic effect of PF-06747143 was similar in CLL cells cultured alone or with stromal cells, suggesting that this antibody has the potential to overcome the protective effect of the tumor microenvironment. We also showed that PF-06747143 induced programmed cell death on CLL cells was dependent on ROS production and that this antibody synergized with agents currently used for the treatment of CLL patients. Overall, these findings highlight the biological relevance of the CXCR4-CXCL12 pathway in CLL, and provide rationale for clinical evaluation of PF-06747143 in CLL and other cancers. Disclosures Choi: Gilead: Consultancy, Other: Advisory Board, Speakers Bureau; AbbVie: Consultancy, Other: Advisory Board, Research Funding. Kipps:Pharmacyclics Abbvie Celgene Genentech Astra Zeneca Gilead Sciences: Other: Advisor.


2011 ◽  
Vol 19 (3) ◽  
pp. 1268-1276 ◽  
Author(s):  
Francisco W.A. Barros ◽  
Paulo N. Bandeira ◽  
Daisy J.B. Lima ◽  
Assuero S. Meira ◽  
Silvana S. de Farias ◽  
...  

2014 ◽  
Vol 7 (1) ◽  
pp. 52-56 ◽  
Author(s):  
Mário Šereš ◽  
Lucia Pavlíková ◽  
Zdena Sulová ◽  
Albert Breier

Abstract P-glycoprotein is an ATP dependent drug efflux pump the expression of which is responsible for strong depression of cell sensitivities to large group of structurally unrelated substances in neoplastic cells. We found that the expression of this protein in mice leukemia cells L1210 is associated with massive remodeling of cell surface saccharides. This remodeling is consistent with the alteration of cellular contents of UDP-sugars, glycogen and glycoproteins when P-gp positive and P-gp negative L1210 cell variants were compared. The current paper is focused on bringing the state of art information about this topic.


2017 ◽  
Author(s):  
Ellen Sletten ◽  
Rachael A. Day ◽  
Daniel A. Estabrook ◽  
Jessica K. Logan

<p>Photodynamic therapy (PDT) requires photosensitizer, light, and oxygen to induce cell death. The majority of efforts to advance PDT focus only on the first two components. Here, we employ perfluorocarbon nanoemulsions to simultaneously deliver oxygen and photosensitizer. We find that the implementation of fluorous soluble photosensitizers enhances the efficacy of PDT. </p>


2021 ◽  
Vol 12 (8) ◽  
Author(s):  
Viktorija Juric ◽  
Lance Hudson ◽  
Joanna Fay ◽  
Cathy E. Richards ◽  
Hanne Jahns ◽  
...  

AbstractActivation of cyclin-dependent kinases (CDKs) contributes to the uncontrolled proliferation of tumour cells. Genomic alterations that lead to the constitutive activation or overexpression of CDKs can support tumourigenesis including glioblastoma (GBM), the most common and aggressive primary brain tumour in adults. The incurability of GBM highlights the need to discover novel and more effective treatment options. Since CDKs 2, 7 and 9 were found to be overexpressed in GBM, we tested the therapeutic efficacy of two CDK inhibitors (CKIs) (CYC065 and THZ1) in a heterogeneous panel of GBM patient-derived cell lines (PDCLs) cultured as gliomaspheres, as preclinically relevant models. CYC065 and THZ1 treatments suppressed invasion and induced viability loss in the majority of gliomaspheres, irrespective of the mutational background of the GBM cases, but spared primary cortical neurons. Viability loss arose from G2/M cell cycle arrest following treatment and subsequent induction of apoptotic cell death. Treatment efficacies and treatment durations required to induce cell death were associated with proliferation velocities, and apoptosis induction correlated with complete abolishment of Mcl-1 expression, a cell cycle-regulated antiapoptotic Bcl-2 family member. GBM models generally appeared highly dependent on Mcl-1 expression for cell survival, as demonstrated by pharmacological Mcl-1 inhibition or depletion of Mcl-1 expression. Further analyses identified CKI-induced Mcl-1 loss as a prerequisite to establish conditions at which the BH3-only protein Bim can efficiently induce apoptosis, with cellular Bim amounts strongly correlating with treatment efficacy. CKIs reduced proliferation and promoted apoptosis also in chick embryo xenograft models of primary and recurrent GBM. Collectively, these studies highlight the potential of these novel CKIs to suppress growth and induce cell death of patient-derived GBM cultures in vitro and in vivo, warranting further clinical investigation.


Sign in / Sign up

Export Citation Format

Share Document