scholarly journals Structure–Activity Relationship and Molecular Docking of Natural Product Library Reveal Chrysin as a Novel Dipeptidyl Peptidase-4 (DPP-4) Inhibitor: An Integrated In Silico and In Vitro Study

Molecules ◽  
2018 ◽  
Vol 23 (6) ◽  
pp. 1368 ◽  
Author(s):  
Poonam Kalhotra ◽  
Veera Chittepu ◽  
Guillermo Osorio-Revilla ◽  
Tzayhri Gallardo-Velázquez
Author(s):  
Kadek Hendra Darmawan

The Filantin compounds in chamber bitter (<em>Phyllanthus niruri</em> L.) and lectin in garlic (<em>Allium sativum</em> L.) was proven as immunomudulatory agents through interaction with <em>Toll-Like Reseptors</em> (TLR) which have role in innate immune responds. Immunomodulators drug available on the market still have many shortcomings such as the low potential. Drug developing by nanotechnology is the right solution to increase the potential of the drug by increasing the absorption and minimize the dose. This research aimed to know the interaction of filantin and lectin with TLR2-TLR1 receptors through <em>molecular docking</em> and produce the nanoemulsion combination of chamber bitter and garlic ethanolic extracts that have phagocytosis activity. <em>In silico </em>assay through <em>molecular docking</em> showed that filantin has affinity for binding to TLR2-TLR1, docking score of lectin (-33,5389) was lower than the filantin (-31.5112). That means lectin has higher affinity for binding to TLR2-TLR1. Nanoemulsion was formulated by SNEDDS methods with composition of co-surfactant: surfactant: oil is 1: 5,25: 1. The nanoemulsion stable at 0,414% (w/v). <em>In vitro</em> assay of phagocytic index (5,03) and ratio (95%) showed that the formulation with nanoemulsion of the combination has higher phagocyte index and ratio than the formulation without nanoemulsion or even the positive controls.


Molecules ◽  
2021 ◽  
Vol 26 (17) ◽  
pp. 5214
Author(s):  
Faisal K. Algethami ◽  
Ilyes Saidi ◽  
Hani Nasser Abdelhamid ◽  
Mohamed R. Elamin ◽  
Babiker Y. Abdulkhair ◽  
...  

Diabetes mellitus is a major health problem globally. The management of carbohydrate digestion provides an alternative treatment. Flavonoids constitute the largest group of polyphenolic compounds, produced by plants widely consumed as food and/or used for therapeutic purposes. As such, isoxazoles have attracted the attention of medicinal chemists by dint of their considerable bioactivity. Thus, the main goal of this work was to discover new hybrid molecules with properties of both flavonoids and isoxazoles in order to control carbohydrate digestion. Moreover, the trifluoromethyl group is a key entity in drug development, due to its strong lipophilicity and metabolic stability. Therefore, the present work describes the condensation of a previously synthesized trifluoromethylated flavonol with different aryl nitrile oxides, affording 13 hybrid molecules indicated as trifluoromethylated flavonoid-based isoxazoles. The structures of the obtained compounds were deduced from by 1H NMR, 13C NMR, and HRMS analysis. The 15 newly synthesized compounds inhibited the activity of α-amylase with an efficacy ranging from 64.5 ± 0.7% to 94.7 ± 1.2% at a concentration of 50 μM, and with IC50 values of 12.6 ± 0.2 μM–27.6 ± 1.1 μM. The most effective compounds in terms of efficacy and potency were 3b, 3h, 3j, and 3m. Among the new trifluoromethylated flavonoid-based isoxazoles, the compound 3b was the most effective inhibitor of α-amylase activity (PI = 94.7 ± 1.2% at 50 μM), with a potency (IC50 = 12.6 ± 0.2 μM) similar to that of the positive control acarbose (IC50 = 12.4 ± 0.1 μM). The study of the structure–activity relationship based on the molecular docking analysis showed a low binding energy, a correct mode of interaction in the active pocket of the target enzyme, and an ability to interact with the key residues of glycosidic cleavage (GLU-230 and ASP-206), explaining the inhibitory effects of α-amylase established by several derivatives.


Sign in / Sign up

Export Citation Format

Share Document