scholarly journals Solvent Extraction and Identification of Active Anticariogenic Metabolites in Piper cubeba L. through 1H-NMR-Based Metabolomics Approach

Molecules ◽  
2018 ◽  
Vol 23 (7) ◽  
pp. 1730 ◽  
Author(s):  
Raja Raja Mazlan ◽  
Yaya Rukayadi ◽  
M. Maulidiani ◽  
Intan Ismail

The aim of this study was to determine the effects of different solvents for extraction, liquid–liquid partition, and concentrations of extracts and fractions of Piper cubeba L. on anticariogenic; antibacterial and anti-inflammatory activity against oral bacteria. Furthermore, 1H-Nuclear Magnetic Resonance (NMR) coupled with multivariate data analysis (MVDA) was applied to discriminate between the extracts and fractions and examine the metabolites that correlate to the bioactivities. All tested bacteria were susceptible to Piper cubeba L. extracts and fractions. Different solvents extraction, liquid–liquid partition and concentrations of extracts and fractions have partially influenced the antibacterial activity. MTT assay showed that P. cubeba L. extracts and fractions were not toxic to RAW 264.7 cells at selected concentrations. Anti-inflammatory activity evaluated by nitric oxide (NO) production in lipopolysaccharide (LPS) stimulated cells showed a reduction in NO production in cells treated with P. cubeba L. extracts and fractions, compared to those without treatment. Twelve putative metabolites have been identified, which are (1) cubebin, (2) yatein, (3) hinokinin, (4) dihydrocubebin, (5) dihydroclusin, (6) cubebinin, (7) magnosalin, (8) p-cymene, (9) piperidine, (10) cubebol, (11) d-germacrene and (12) ledol. Different extraction and liquid–liquid partition solvents caused separation in principal component analysis (PCA) models. The partial least squares (PLS) models showed that higher anticariogenic activity was related more to the polar solvents, despite some of the active metabolites also present in the non-polar solvents. Hence, P. cubeba L. extracts and fractions exhibited antibacterial and anti-inflammatory activity and have potential to be developed as the anticariogenic agent.

Molecules ◽  
2020 ◽  
Vol 25 (23) ◽  
pp. 5733
Author(s):  
Esrat Jahan Rupa ◽  
Jin Feng Li ◽  
Muhammad Huzaifa Arif ◽  
Han Yaxi ◽  
Aditi Mitra Puja ◽  
...  

This study aimed to produce and optimize a Cordyceps militaris-based oil-in-water (O/W) nanoemulsion (NE) encapsulated in sea buckthorn oil (SBT) using an ultrasonication process. Herein, a nonionic surfactant (Tween 80) and chitosan cosurfactant were used as emulsifying agents. The Cordyceps nanoemulsion (COR-NE) was characterized using Fourier-transform infrared spectroscopy (FT-IR), dynamic light scattering (DLS), and field-emission transmission electron microscope (FE-TEM). The DLS analyses revealed that the NE droplets were 87.0 ± 2.1 nm in diameter, with a PDI value of 0.089 ± 0.023, and zeta potential of −26.20 ± 2. The small size, low PDI, and stable zeta potential highlighted the excellent stability of the NE. The NE was tested for stability under different temperature (4 °C, 25 °C, and 60 °C) and storage conditions for 3 months where 4 °C did not affect the stability. Finally, in vitro cytotoxicity and anti-inflammatory activity were assessed. The results suggested that the NE was not toxic to RAW 264.7 or HaCaT (human keratinocyte) cell lines at up to 100 µL/mL. Anti-inflammatory activity in liposaccharides (LPS)-induced RAW 264.7 cells was evident at 50 µg/mL and showed inhibition of NO production and downregulation of pro-inflammatory gene expression. Further, the NE exhibited good antioxidant (2.96 ± 0.10 mg/mL) activity and inhibited E. coli and S. aureus bacterial growth. Overall, the COR-NE had greater efficacy than the free extract and added significant value for future biomedical and cosmetics applications.


Author(s):  
Adek Zamrud Adnan ◽  
Muhammad Taher ◽  
Tika Afriani ◽  
Annisa Fauzana ◽  
Dewi Imelda Roesma ◽  
...  

 Objective: The aim of this study was to investigate in vitro anti-inflammatory activity of tinocrisposide using lipopolysaccharides (LPS)-stimulated RAW 264.7 macrophage cells. Tinocrisposide is a furano diterpene glycoside that was isolated in our previous study from Tinospora crispa.Methods: Anti-inflammatory effect was quantified spectrometrically using Griess method by measuring nitric oxide (NO) production after the addition of Griess reagent.Results: The sample concentrations of 1, 5, 25, 50, and 100 μM and 100 μM of dexamethasone (positive control) have been tested against the LPS-stimulated RAW 264.7 cells, and the results showed NO level production of 39.23, 34.00, 28.9, 20.25, 16.3, and 13.68 μM, respectively, and the inhibition level of 22.67, 33.00, 43.03, 60.10, 68.00, and 73%, respectively.Conclusions: From the study, it could be concluded that tinocrisposide was able to inhibit the formation of NO in the LPS-stimulated RAW 264.7 cells in concentration activity-dependent manner, with half-maximal inhibition concentration 46.92 μM. It can be developed as anti-inflammatory candidate drug because NO is a reactive nitrogen species which is produced by NO synthase. The production of NO has been established as a mediator in inflammatory diseases.


2021 ◽  
Vol 14 (8) ◽  
pp. 771
Author(s):  
Su-Hyeon Cho ◽  
SeonJu Park ◽  
Hoibin Jeong ◽  
Song-Rae Kim ◽  
Myeong Seon Jeong ◽  
...  

Juglans mandshurica Maxim., a traditional folk medicinal plant, is widely distributed in Korea and China. In our previous study, we isolated a new phenylpropanoid compound, 4-((1R,2R)-3-hydroxy-1-(4-hydroxyphenyl)-1-methoxypropan-2-yl)-2-methoxyphenol (HHMP), from J. mandshurica. In the present study, we evaluated the anti-inflammatory activity of HHMP on lipopolysaccharide (LPS)-stimulated RAW 264.7 cells and zebrafish larvae. HHMP significantly inhibited LPS-induced nitric oxide (NO) and prostaglandin E2 production in a dose-dependent manner. Moreover, HHMP treatment considerably suppressed LPS-induced expression of inducible nitric oxide synthase and cyclooxygenase-2. We also demonstrated the mechanisms of HHMP inhibition of inflammatory responses in LPS-stimulated RAW 264.7 cells via Western blot analysis and immunofluorescence staining. Furthermore, HHMP significantly inhibited NO production in LPS-stimulated zebrafish larvae. Consequently, we established that HHMP significantly inhibited the LPS-induced activation of NF-κB and MAPK and the nuclear translocation of p65 in RAW 264.7 cells. Taken together, our findings demonstrate the effect of HHMP on LPS-induced inflammatory responses in vitro and in vivo, suggesting its potential to be used as a natural anti-inflammatory agent.


2016 ◽  
Vol 11 (10) ◽  
pp. 1934578X1601101
Author(s):  
Alev Tosun ◽  
Jaemoo Chun ◽  
Igor Jerković ◽  
Zvonimir Marijanović ◽  
Maurizio A. Fenu ◽  
...  

The anti-inflammatory activity of the essential oils from Seseli corymbosum subsp. corymbosum Pall. ex Sm. (SC) and Seseli gummiferum Boiss. & Heldr. subsp. corymbosum (SG) was investigated for the first time on lipopolysaccharide (LPS)-stimulated RAW 264.7 cells. The main constituents (determined by GC-FID and GC-MS analyses) were germacrene D (54.1%) and sabinene (22.4%) in SG oil and β-phellandrene (29.2%), α-phellandrene (8.2%) and germacrene D (2.5%) in SC oil. SC and SG oils inhibited nitric oxide (NO) production with IC50 values of 56.1 and 108.2 μg/mL, respectively. The oils also inhibited prostaglandin E2 (PGE2) with IC50 values of 49.4 μg/mL (SC oil) and 95.5 μg/mL (SG oil). The inhibitory effect of SC and SG oils was accompanied by dose-dependent decreases of inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) protein expressions in LPS-induced RAW 264.7 cells. The research of the reporter gene assay on nuclear factor κB (NF-κB) showed that SC and SG oils inhibited NF-κB transcriptional activity. The obtained results suggest that SC and SG oils exert the anti-inflammatory effects in LPS-stimulated RAW 264.7 cells by suppressing NF-κB activation.


2017 ◽  
Vol 8 (11) ◽  
pp. 4150-4158 ◽  
Author(s):  
Papawee Saiki ◽  
Yasuhiro Kawano ◽  
Leo J. L. D. Van Griensven ◽  
Koyomi Miyazaki

Linoleic acid fromA. brasiliensiscould reduce NO production and inflammatory activity in RAW 264.7 cells by inhibition of p50 andviaactivation of PPARα.


Marine Drugs ◽  
2022 ◽  
Vol 20 (1) ◽  
pp. 44
Author(s):  
Hee Jae Shin ◽  
Chang-Su Heo ◽  
Cao Van Anh ◽  
Yeo Dae Yoon ◽  
Jong Soon Kang

Four new streptoglycerides E–H (1–4), with a rare 6/5/5/-membered ring system, were isolated from a marine-derived actinomycete Streptomyces specialis. The structures of 1–4 were elucidated by detailed analysis of HRESIMS, 1D and 2D NMR data and ECD spectra as well as comparison of their spectroscopic data with those reported in literature. Compounds 1–4 showed significant anti-inflammatory activity by inhibiting lipopolysaccharide (LPS)-induced nitric oxide (NO) production in Raw 264.7 cells with IC50 values ranging from 3.5 to 10.9 µM. Especially, 2 suppressed mRNA expression levels of iNOS and IL-6 without cytotoxicity.


2014 ◽  
Vol 9 (7) ◽  
pp. 1934578X1400900 ◽  
Author(s):  
Ren Li ◽  
Jing-jing Yang ◽  
Yuan-fei Wang ◽  
Qian Sun ◽  
Hua-bin Hu

The present study is the first investigation of the chemical composition, antioxidant, antimicrobial and anti-inflammatory activities of the stem and leaf essential oils from Piper flaviflorum C.DC (SEOP and LEOP), a plant that has been consumed as a wild vegetable, and used as medicine, and spice by the ethnic groups in Xishuangbanna, SW China. Analyzed by GC-MS, 42 and 30 components were identified representing 90.1% and 95.3% of the SEOP and LEOP, with (E)-nerolidol (16.7% and 40.5%), β-caryophyllene (26.6% and 14.6%) and elixene (5.3% and 12.3%) as their main constituents, respectively. Our results indicate that SEOP and LEOP have good anti-inflammatory activity by significantly inhibiting NO production induced by LPS in RAW 264.7 cells at 0.04± without effect on cell viability, and negligible antioxidant activity in both ABTS and FRAP assays. Moreover, the LEOP showed comparable activity with the positive control (tigecycline) against Aspergillus fumigatus, with MIC and MBC values ranging from 256 to 1024 μg/mL. The anti-inflammatory activity in LPS-induced RAW 264.7 cells is worthy of further investigation to discover the possible mechanisms of the NO production inhibition effect of these essential oils.


Marine Drugs ◽  
2019 ◽  
Vol 17 (8) ◽  
pp. 482 ◽  
Author(s):  
Lee ◽  
Kang ◽  
Choi ◽  
Lee ◽  
Lee ◽  
...  

Three new phenazine derivatives (1–3), along with known compounds (4–7) of saphenic acid derivatives, were isolated from a deep-sea sediment-derived yeast-like fungus Cystobasidium larynigs collected from the Indian Ocean. The structures of the new compounds (1–3) were determined by analysis of spectroscopic data, semi-synthesis and comparison of optical rotation values. All the isolated compounds (1–7), except for 2, showed nitric oxide (NO) production inhibitory effect against lipopolysaccharide (LPS)-induced murine macrophage RAW 264.7 cells without cytotoxicity at concentrations up to 30 μg/mL. This is the first report on the yeast-like fungus Cystobasidium laryngis producing phenazines and anti-inflammatory activity of 1–7 including saphenic acid (4).


2021 ◽  
Vol 8 (01) ◽  
pp. e25-e33
Author(s):  
Ranendra Pratap Biswal ◽  
Durga Prasad Patnana ◽  
Sujith Kumar Pulukool ◽  
Venketesh Sivaramakrishnan ◽  
Ashish Pargaonkar ◽  
...  

AbstractNeem tree (Azadirachta indica) is one of the richest sources of secondary metabolites. More than 250 natural products have been characterized from various parts of the neem tree. These include diterpenoids, triterpenoids, steroids, flavonoids, coumarins, hydrocarbons, and fatty acids. Many of these products possess therapeutic properties. Neem exudate or toddy is a milky white liquid with a strong smell secreted from the angle between the 2 main branches of old trees. Profiling of neem toddy for the presence of active metabolites was done by an in-house database using UHPLC-QTOF-MS. Fifty-seven metabolites were identified from the full scan of electrospray ionization positive and negative mode from the neem toddy extract by using UHPLC-QTOF-MS. Further confirmation of 31 of these metabolites was done by obtaining MS/MS spectrum from UHPLC-QTOF-MS. Principal component analysis study of metabolites from neem toddy with leaves, seed, seed coat, and bark revealed that they are closely related to those contained in neem seeds and seed coats. Azadirachtin, nimbidiol, 22,23-dihydroazadirachtin, nimbonone, nimbonolone, nimosone, and 6-deacetylnimbinene were found to be some of the most abundant metabolites in neem toddy. The neem toddy extract showed significant anti-inflammatory activity when tested in N9 murine microglial cells with 25 ng of recombinant mouse tumor necrosis factor alpha protein (active) using qRT-PCR. The active metabolites in neem toddy could be further explored for their therapeutic potentials.


Molecules ◽  
2020 ◽  
Vol 25 (21) ◽  
pp. 4968
Author(s):  
Dahae Lee ◽  
Jae Sik Yu ◽  
Peng Huang ◽  
Mallique Qader ◽  
Arulmani Manavalan ◽  
...  

Noni (Morinda citrifolia L.) fruit juice has been used in Polynesia as a traditional folk medicine and is very popular worldwide as a functional food supplement. In this study, compounds present in Hawaiian Noni fruit juice, with anti-inflammatory activity in lipopolysaccharide (LPS)-stimulated RAW 264.7 cells were identified. Five compounds were isolated using a bioassay-driven technique and phytochemical analysis of noni fruit juice: asperulosidic acid (1), rutin (2), nonioside A (3), (2E,4E,7Z)-deca-2,4,7-trienoate-2-O-β-d-glucopyranosyl-β-d-glucopyranoside (4), and tricetin (5). The structures of these five compounds were determined via NMR spectroscopy and LC/MS. In an anti-inflammatory assay, compounds 1–5 inhibited the production of nitric oxide (NO), which is a proinflammatory mediator, in LPS-stimulated macrophages. Moreover, the mechanisms underlying the anti-inflammatory effects of compounds 1–5 were investigated. Parallel to the inhibition of NO production, treatment with compounds 1–5 downregulated the expression of IKKα/β, I-κBα, and NF-κB p65 in LPS-stimulated macrophages. Furthermore, treatment with compounds 1–5 downregulated the expression of nitric oxide synthase and cyclooxygenase-2. Thus, these data demonstrated that compounds 1–5 present in noni fruit juice, exhibited potential anti-inflammatory activity; these active compounds may contribute preventively and therapeutically against inflammatory diseases.


Sign in / Sign up

Export Citation Format

Share Document