scholarly journals ANTI-INFLAMMATORY ACTIVITY OF TINOCRISPOSIDE BY INHIBITING NITRIC OXIDE PRODUCTION IN LIPOPOLYSACCHARIDES-STIMULATED RAW 264.7 CELLS

Author(s):  
Adek Zamrud Adnan ◽  
Muhammad Taher ◽  
Tika Afriani ◽  
Annisa Fauzana ◽  
Dewi Imelda Roesma ◽  
...  

 Objective: The aim of this study was to investigate in vitro anti-inflammatory activity of tinocrisposide using lipopolysaccharides (LPS)-stimulated RAW 264.7 macrophage cells. Tinocrisposide is a furano diterpene glycoside that was isolated in our previous study from Tinospora crispa.Methods: Anti-inflammatory effect was quantified spectrometrically using Griess method by measuring nitric oxide (NO) production after the addition of Griess reagent.Results: The sample concentrations of 1, 5, 25, 50, and 100 μM and 100 μM of dexamethasone (positive control) have been tested against the LPS-stimulated RAW 264.7 cells, and the results showed NO level production of 39.23, 34.00, 28.9, 20.25, 16.3, and 13.68 μM, respectively, and the inhibition level of 22.67, 33.00, 43.03, 60.10, 68.00, and 73%, respectively.Conclusions: From the study, it could be concluded that tinocrisposide was able to inhibit the formation of NO in the LPS-stimulated RAW 264.7 cells in concentration activity-dependent manner, with half-maximal inhibition concentration 46.92 μM. It can be developed as anti-inflammatory candidate drug because NO is a reactive nitrogen species which is produced by NO synthase. The production of NO has been established as a mediator in inflammatory diseases.

Author(s):  
Chun Whan Choi ◽  
Ju Young Shin ◽  
Changon Seo ◽  
Seong Su Hong ◽  
Eun-Kyung Ahn ◽  
...  

Background: Plants still remain the prime source of drugs for the treatment of inflammation and can provide leads for the development of novel anti-inflammatory agents. Material and methods: An in vitro bioassay guide revealed that the 80% ethanol (EtOH) extract of the whole plant, Amomum tsao-ko (Zingiberaceae), displayed anti-inflammatory activity after assessing its effects on murine macrophage RAW 264.7 cells. Result: Phytochemical study of the 80% EtOH extract of Amomum tsao-ko led to the isolation of eight compounds: 4-hydroxy-3-methoxy-benzoic acid (1), meso-hannokinol (2), (+)-hannokinol (3), coumaric acid (4), 4-hydroxy-benzoic acid (5), (+)-epicatechin (6), (-)-catechin (7), and myrciaphenone A (8). The results indicated that two of the isolated components, (+)-epicatechin (6) and (-)-catechin (7), inhibited the production of nitric oxide (NO) significantly in lipopolysaccharide treated RAW 264.7 cells. Conclusion: LPS-induced interleukin tumor necrosis factor-alpha (TNF-), IL-1β and IL-10 production was also decreased in a dose-dependent manner. In addition, western blot analysis revealed that (+)-epicatechin (6) and (-)-catechin (7) reduced the expression of inducible nitric oxide synthase and inhibited nuclear localization of nuclear factor kappa-B (NF-κB).


2021 ◽  
Vol 14 (8) ◽  
pp. 771
Author(s):  
Su-Hyeon Cho ◽  
SeonJu Park ◽  
Hoibin Jeong ◽  
Song-Rae Kim ◽  
Myeong Seon Jeong ◽  
...  

Juglans mandshurica Maxim., a traditional folk medicinal plant, is widely distributed in Korea and China. In our previous study, we isolated a new phenylpropanoid compound, 4-((1R,2R)-3-hydroxy-1-(4-hydroxyphenyl)-1-methoxypropan-2-yl)-2-methoxyphenol (HHMP), from J. mandshurica. In the present study, we evaluated the anti-inflammatory activity of HHMP on lipopolysaccharide (LPS)-stimulated RAW 264.7 cells and zebrafish larvae. HHMP significantly inhibited LPS-induced nitric oxide (NO) and prostaglandin E2 production in a dose-dependent manner. Moreover, HHMP treatment considerably suppressed LPS-induced expression of inducible nitric oxide synthase and cyclooxygenase-2. We also demonstrated the mechanisms of HHMP inhibition of inflammatory responses in LPS-stimulated RAW 264.7 cells via Western blot analysis and immunofluorescence staining. Furthermore, HHMP significantly inhibited NO production in LPS-stimulated zebrafish larvae. Consequently, we established that HHMP significantly inhibited the LPS-induced activation of NF-κB and MAPK and the nuclear translocation of p65 in RAW 264.7 cells. Taken together, our findings demonstrate the effect of HHMP on LPS-induced inflammatory responses in vitro and in vivo, suggesting its potential to be used as a natural anti-inflammatory agent.


Molecules ◽  
2020 ◽  
Vol 25 (17) ◽  
pp. 3784
Author(s):  
Jingya Ruan ◽  
Ying Zhang ◽  
Wei Zhao ◽  
Fan Sun ◽  
Lifeng Han ◽  
...  

Two new 12,23-epoxydammarane-type saponins, notoginsenosides NL-I (1) and NL-J (2), were isolated and identified from Panax notoginseng leaves through the combination of various chromatographies and extensive spectroscopic methods, as well as chemical reactions. Among them, notoginsenoside NL-J (2) had a new skeleton. Furthermore, the lipopolysaccharide (LPS)-induced RAW 264.7 macrophage model was used to identify the in vitro anti-inflammatory activity and mechanisms of compounds 1 and 2. Both of them exerted strong inhibition on nitric oxide (NO) productions in a concentration-dependent manner at 1, 10, and 25 μM. Moreover, these two compounds significantly decreased the secretion of tumor necrosis factor-alpha (TNF-α), interleukin 6 (IL-6), cyclooxygenase-2 (COX-2), nuclear factor kappa-B (NF-κB/p65), and nitric-oxide synthase (iNOS) in LPS-activated RAW 264.7 cells.


Author(s):  
Krishna Chaithanya K ◽  
Gopalakrishnan V K ◽  
ZenebeHagos . ◽  
Nagaraju B ◽  
Kamalakararao K ◽  
...  

Objective: Mesuaferrea L is a medicinal plant belongs to the family Clusiace, it is extensively used in folk medicine for treatment of chronic inflammatory diseases.The present study was aimed to evaluate in vitro and in vivo anti-inflammatory activity of M. ferrea L. Methods: The in vitro anti-inflammatory activities such as nitric oxide, PGE2, pro-inflammatory cytokines (TNF-α and IL-1β) were studied in RAW 264.7 cells and in vivo studies were carried out on carrageenan -induced inflammation in Wistar rats. The sequentially extracted M. ferreaL bark extracts (MFBHE, MFBEE, and MFBME) exhibited inhibitory effects on pro-inflammatory mediators such as nitric oxide, prostaglandin E2, tumour necrosis factorαandinterleukin-1βproduction in concentration dependent manner in LPS induced RAW 264.7 cells andCarrageenan induced paw oedema in Wistar rats. Conclusion: The result of the present study indicated that M. ferrea L ethyl acetate bark extract exhibited significant in vitroand in vivoanti-inflammatory activity.


Molecules ◽  
2019 ◽  
Vol 24 (21) ◽  
pp. 3910 ◽  
Author(s):  
Min-Seon Kim ◽  
Jin-Soo Park ◽  
You Chul Chung ◽  
Sungchan Jang ◽  
Chang-Gu Hyun ◽  
...  

Biorenovation is a microbial enzyme-catalyzed structural modification of organic compounds with the potential benefits of reduced toxicity and improved biological properties relative to their precursor compounds. In this study, we synthesized a novel compound verified as formononetin 7-O-phosphate (FMP) from formononetin (FM) using microbial biotransformation. We further compared the anti-inflammatory properties of FMP to FM in lipopolysaccharide (LPS)-treated RAW264.7 macrophage cells. We observed that cell viabilities and inhibitory effects on LPS-induced nitric oxide (NO) production were greater in FMP-treated RAW 264.7 cells than in their FM-treated counterparts. In addition, FMP treatment suppressed the production of proinflammatory cytokines such as prostaglandin-E2 (PGE2), interleukin-6 (IL-6), and interleukin-1β (IL-1β) in a dose-dependent manner and concomitantly decreased the mRNA expression of inducible NO synthase (iNOS) and cyclooxygenase-2 (COX-2). We also found that FMP exerted its anti-inflammatory effects through the downregulation of the extracellular signal-regulated kinase (ERK), c-Jun N-terminal kinase (JNK), and nuclear factor kappa B (NF-κB) signaling pathways. In conclusion, we generated a novel anti-inflammatory compound using biorenovation and demonstrated its efficacy in cell-based in vitro assays.


Molecules ◽  
2020 ◽  
Vol 25 (23) ◽  
pp. 5733
Author(s):  
Esrat Jahan Rupa ◽  
Jin Feng Li ◽  
Muhammad Huzaifa Arif ◽  
Han Yaxi ◽  
Aditi Mitra Puja ◽  
...  

This study aimed to produce and optimize a Cordyceps militaris-based oil-in-water (O/W) nanoemulsion (NE) encapsulated in sea buckthorn oil (SBT) using an ultrasonication process. Herein, a nonionic surfactant (Tween 80) and chitosan cosurfactant were used as emulsifying agents. The Cordyceps nanoemulsion (COR-NE) was characterized using Fourier-transform infrared spectroscopy (FT-IR), dynamic light scattering (DLS), and field-emission transmission electron microscope (FE-TEM). The DLS analyses revealed that the NE droplets were 87.0 ± 2.1 nm in diameter, with a PDI value of 0.089 ± 0.023, and zeta potential of −26.20 ± 2. The small size, low PDI, and stable zeta potential highlighted the excellent stability of the NE. The NE was tested for stability under different temperature (4 °C, 25 °C, and 60 °C) and storage conditions for 3 months where 4 °C did not affect the stability. Finally, in vitro cytotoxicity and anti-inflammatory activity were assessed. The results suggested that the NE was not toxic to RAW 264.7 or HaCaT (human keratinocyte) cell lines at up to 100 µL/mL. Anti-inflammatory activity in liposaccharides (LPS)-induced RAW 264.7 cells was evident at 50 µg/mL and showed inhibition of NO production and downregulation of pro-inflammatory gene expression. Further, the NE exhibited good antioxidant (2.96 ± 0.10 mg/mL) activity and inhibited E. coli and S. aureus bacterial growth. Overall, the COR-NE had greater efficacy than the free extract and added significant value for future biomedical and cosmetics applications.


2020 ◽  
Vol 23 (1) ◽  
Author(s):  
Lei Wang ◽  
You-Jin Jeon ◽  
Jae-Il Kim

Abstract Background Inflammation plays a crucial role in the pathogenesis of many diseases such as arthritis and atherosclerosis. In the present study, we evaluated anti-inflammatory activity of sterol-rich fraction prepared from Spirogyra sp., a freshwater green alga, in an effort to find bioactive extracts derived from natural sources. Methods The sterol content of ethanol extract of Spirogyra sp. (SPE) was enriched by fractionation with hexane (SPEH), resulting 6.7 times higher than SPE. Using this fraction, the in vitro and in vivo anti-inflammatory activities were evaluated in lipopolysaccharides (LPS)-stimulated RAW 264.7 cells and zebrafish. Results SPEH effectively and dose-dependently decreased the production of nitric oxide (NO) and prostaglandin E2 (PGE2). SPEH suppressed the production of pro-inflammatory cytokines including interleukin-6 (IL-6), tumor necrosis factor-α (TNF-α), and IL-1β through downregulating nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) expression in LPS-stimulated RAW 264.7 cells without cytotoxicity. The in vivo test results indicated that SPEH significantly and dose-dependently reduced reactive oxygen species (ROS) generation, cell death, and NO production in LPS-stimulated zebrafish. Conclusions These results demonstrate that SPEH possesses strong in vitro and in vivo anti-inflammatory activities and has the potential to be used as healthcare or pharmaceutical material for the treatment of inflammatory diseases.


2016 ◽  
Vol 11 (10) ◽  
pp. 1934578X1601101
Author(s):  
Alev Tosun ◽  
Jaemoo Chun ◽  
Igor Jerković ◽  
Zvonimir Marijanović ◽  
Maurizio A. Fenu ◽  
...  

The anti-inflammatory activity of the essential oils from Seseli corymbosum subsp. corymbosum Pall. ex Sm. (SC) and Seseli gummiferum Boiss. & Heldr. subsp. corymbosum (SG) was investigated for the first time on lipopolysaccharide (LPS)-stimulated RAW 264.7 cells. The main constituents (determined by GC-FID and GC-MS analyses) were germacrene D (54.1%) and sabinene (22.4%) in SG oil and β-phellandrene (29.2%), α-phellandrene (8.2%) and germacrene D (2.5%) in SC oil. SC and SG oils inhibited nitric oxide (NO) production with IC50 values of 56.1 and 108.2 μg/mL, respectively. The oils also inhibited prostaglandin E2 (PGE2) with IC50 values of 49.4 μg/mL (SC oil) and 95.5 μg/mL (SG oil). The inhibitory effect of SC and SG oils was accompanied by dose-dependent decreases of inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) protein expressions in LPS-induced RAW 264.7 cells. The research of the reporter gene assay on nuclear factor κB (NF-κB) showed that SC and SG oils inhibited NF-κB transcriptional activity. The obtained results suggest that SC and SG oils exert the anti-inflammatory effects in LPS-stimulated RAW 264.7 cells by suppressing NF-κB activation.


Molecules ◽  
2021 ◽  
Vol 26 (17) ◽  
pp. 5351
Author(s):  
Jin-Kyu Kang ◽  
You-Chul Chung ◽  
Chang-Gu Hyun

Persistent inflammatory reactions promote mucosal damage and cause dysfunction, such as pain, swelling, seizures, and fever. Therefore, in this study, in order to explore the anti-inflammatory effect of 6-methylcoumarin (6-MC) and suggest its availability, macrophages were stimulated with lipopolysaccharide (LPS) to conduct an in vitro experiment. The effects of 6-MC on the production and levels of pro-inflammatory cytokines (interleukin (IL)-1β, IL-6, tumor necrosis factor (TNF)-α) and inflammatory mediators (nitric oxide (NO), prostaglandin E2 (PGE2)) in LPS-stimulated RAW 264.7 cells were examined. The results showed that 6-MC reduced the levels of NO and PGE2 without being cytotoxic. In addition, it was demonstrated that the increase in the expression of pro-inflammatory cytokines caused by LPS stimulation, was decreased in a concentration-dependent manner with 6-MC treatment. Moreover, Western blot results showed that the protein levels of inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2), which increased with LPS treatment, were decreased by 6-MC treatment. Mechanistic studies revealed that 6-MC reduced the phosphorylation of the mitogen-activated protein kinase (MAPK) family and IκBα in the MAPK and nuclear factor-kappa B (NF-κB) pathways, respectively. These results suggest that 6-MC is a potential therapeutic agent for inflammatory diseases that inhibits inflammation via the MAPK and NF-κB pathways.


Foods ◽  
2021 ◽  
Vol 10 (12) ◽  
pp. 3155
Author(s):  
Lijia Zhang ◽  
Mengzhou Yin ◽  
Xi Feng ◽  
Salam A. Ibrahim ◽  
Ying Liu ◽  
...  

In this study, triterpenoid compounds from Poriae Cutis were separated by high-speed countercurrent chromatography (HSCCC) and identified using ultra-high performance liquid chromatography quadrupole time-of-flight tandem mass spectrometry (UHPLC-QTOF-MS/MS) and nuclear magnetic resonance (NMR). The in vitro anti-inflammatory activities of the purified triterpenoids on RAW 264.7 cells were also investigated. Triterpenoids, poricoic acid B, poricoic acid A, dehydrotrametenolic acid, and dehydroeburicoic acid were obtained; their levels of purity were 90%, 92%, 93%, and 96%, respectively. The results indicated that poricoic acid B had higher anti-inflammatory activity than those of poricoic acid A by inhibiting the generation of NO in lipopolysaccharide (LPS)-induced RAW 264.7 cells. However, dehydrotrametenolic acid and dehydroeburicoic acid had no anti-inflammatory activity. In addition, the production of cytokines (TNF-α, IL-1β, and IL-6) in cells treated with poricoic acid B decreased in a dose-dependent manner in the concentration range from 10 to 40 μg/mL. The results provide evidence for the use of Poriae Cutis as a natural anti-inflammatory agent in medicines and functional foods.


Sign in / Sign up

Export Citation Format

Share Document