scholarly journals Production and Characterization of a Bioflocculant Produced by Bacillus salmalaya 139SI-7 and Its Applications in Wastewater Treatment

Molecules ◽  
2018 ◽  
Vol 23 (10) ◽  
pp. 2689 ◽  
Author(s):  
Zayed Abu Tawila ◽  
Salmah Ismail ◽  
Arezoo Dadrasnia ◽  
Mohammed Usman

The production, optimization, and characterization of the bioflocculant QZ-7 synthesized by a novel Bacillus salmalaya strain 139SI isolated from a private farm soil in Selangor, Malaysia, are reported. The flocculating activity of bioflocculant QZ-7 present in the selected strain was found to be 83.3%. The optimal culture for flocculant production was achieved after cultivation at 35.5 °C for 72 h at pH 7 ± 0.2, with an inoculum size of 5% (v/v) and sucrose and yeast extract as carbon and nitrogen sources. The maximum flocculating activity was found to be 92.6%. Chemical analysis revealed that the pure bioflocculant consisted of 79.08% carbohydrates and 15.4% proteins. The average molecular weight of the bioflocculant was calculated to be 5.13 × 105 Da. Infrared spectrometric analysis showed the presence of carboxyl (COO-), hydroxyl (-OH), and amino (-NH2) groups, polysaccharides and proteins. The bioflocculant QZ-7 exhibited a wide pH stability range from 4 to 7, with a flocculation activity of 85% at pH 7 ± 0.2. In addition, QZ-7 was thermally stable and retained more than 80% of its flocculating activity after being heated at 80 °C for 30 min. SEM analysis revealed that QZ-7 exhibited a clear crystalline brick-shaped structure. After treating wastewater, the bioflocculant QZ-7 showed significant flocculation performance with a COD removal efficiency of 93%, whereas a BOD removal efficiency of 92.4% was observed in the B. salmalaya strain 139SI. These values indicate the promising applications of the bioflocculant QZ-7 in wastewater treatment.

2020 ◽  
Vol 42 ◽  
pp. e9
Author(s):  
Bruno Las-Casas Chaves ◽  
Ana Paula Martinazzo ◽  
Brisabella Coca ◽  
Adriane Nunes De Souza ◽  
Carlos Eduardo Teodoro

This paper reports the process of production optimization and partial characterization of xylanase from a newly isolated Bacillus amyloliquefacies VR002, isolated from local soil. The microorganism exhibited maximum xylanase production when 1.0% (v/v) of inoculum size was added to culture medium with initial pH 6, 1.0% (w/v) birchwood xylan, at 35 °C after 48h of incubation. Xylanase production in different carbon sources apart from birchwood xylan and xylose did not show high production levels. Optimum pH for xylanase activity was 6.0. The enzyme was alkali-stable and retained 100% of residual activity over the pH range from 6.0 to 10.0 for 24 h at 25°C. Optimum temperature for enzyme activity was 55°C. Xylanase was 100% stable at 4°C and 25°C even after 24h of incubation, a desirable characteristic for enzyme storage. Moreover, best crude extract volume and time reaction were found to be 10 µL and 5 min, respectively. After optimization of production and activity parameters, an increase of nearly 60-fold in xylanase activity (44.12 ± 4.36 U/mL) was achieved. Characteristics of B. amyloliquefaciens VR002 xylanase are particularly desirable for biotechnological applications


2012 ◽  
Vol 518-523 ◽  
pp. 453-459
Author(s):  
Li Fan Liu

Bioflocculant MBF7 was produced by a novel bioflocculant-producing microorganism HHE-P7. In order to reduce the bioflocculant producing cost, culture experiments were conducted. The effects of medium components including carbon and nitrogen sources as well as culture conditions such as pH of molasses diluents, cultivating temperature, inoculum size were investigated. The results showed when the molasses waste was diluted at COD concentration of 2000 mg/L, the optimal culture conditions for MBF7 production by HHE-P7 were inoculum size 1% (v/v), initial pH 5, cultivating temperature 25°C at the rotation speed 150 r/min. Under such conditions, MBF7 had a flocculating activity of 83% for 5 g/L kaolin clay suspension. About 3.19 g crude bioflocculant could be recovered from 1.0 L of molasses fermentation broth.


Minerals ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 132
Author(s):  
Nkosinathi Goodman Dlamini ◽  
Albertus Kotze Basson ◽  
Viswanadha Srirama Rajasekhar Pullabhotla

Wastewater treatment has become a global challenge with wastewater treatment cost fast increasing. Industrial processes such as downstream processes, wastewater treatment, and several fermentation processes depend largely on the use of flocculants. Synthetic flocculants, which are conventionally used in wastewater treatment, are hazardous to the environment and are carcinogenic to human health. Therefore, bioflocculants can be used as an alternative due to their biodegradable and environmentally friendly nature. However, low efficacy hinders their industrial application. This necessitates the need for a new technology to combat wastewater treatment challenges. Nanotechnology provides the platform to explore the possible solutions to these problems. The combination of two different metals results in the formation of bimetallic nanoparticles (BNPs). Due to better properties, bimetallic nanoparticles have attracted huge attention as compared to monometallic nanoparticles from both technological and scientific views. Iron copper bimetallic nanoparticles (FeCu BNPs) were successfully stabilized by bioflocculant and used in the coal mine wastewater treatment. Infrared spectrometric analysis showed the presence of carboxyl (COO−), hydroxyl (−OH), and amino (−NH2) functional groups. SEM images showed irregular and crystalline like morphology. Meanwhile, TEM analysis revealed chain like agglomerated nanoparticles. FeCu BNPs exhibited a wide pH stability range from 3, 7, and 11 with 99% flocculation activity at pH 7 and at lowest dosage of 0.2 mg/mL. After treating wastewater, the FeCu BNPs could remove pollutants such as phosphate, sulfate, calcium, chemical oxygen demand (COD), and biological oxygen demand (BOD) with phosphate having the highest removal efficacy of 99%.


1995 ◽  
Vol 31 (12) ◽  
pp. 171-183 ◽  
Author(s):  
M. M. Saqqar ◽  
M. B. Pescod

The performance of the primary anaerobic pond at the Alsamra Wastewater Treatment Plant in Jordan was monitored over 48 months. Overall averages for the removal efficiencies of BOD5, COD and suspended solids were 53%, 53% and 74%, respectively. An improvement in removal efficiency with increase in pond water temperature was demonstrated. A model, which takes into account the variability of raw wastewater at different locations, has been developed to describe the performance of a primary anaerobic pond in terms of a settleability ratio for the raw wastewater. The model has been verified by illustrating the high correlation between actual and predicted pond performance.


1994 ◽  
Vol 29 (7) ◽  
pp. 229-237 ◽  
Author(s):  
J. Kruit ◽  
F. Boley ◽  
L. J. A. M. Jacobs ◽  
T. W. M. Wouda

Influent characterization and biosorption experiments were carried out with settled influent of seven wastewater treatment plants to study the influence of O2 in the selector in relation to the success of developing good settling properties of the sludge. In previous years working selectors were installed and/or pilot plant research was carried out at these wastewater treatment plants. Characterization of the influent was done with help of standard COD and BOD measurements with help of a coarse filter. The research has elucidated that the presence of O2 in the selector, at initial sludge loadings of 3.5-6.5 kg BOD/kg MLSS.d, is important for producing good settling properties of the sludge when the sum of readily biodegradable COD and rapidly hydrolysable COD is greater than 40%. When the sum of sludge COD and slow hydrolysable COD is greater than 50% an unaerated selector can be used.


1994 ◽  
Vol 40 (2) ◽  
pp. 216-220 ◽  
Author(s):  
A H Wu ◽  
D Ostheimer ◽  
M Cremese ◽  
E Forte ◽  
D Hill

Abstract Interference by substances coeluting with targeted drugs is a general problem for gas chromatographic/mass spectrometric analysis of urine. To characterize these interferences, we examined human urine samples containing benzoylecgonine and fluconazole, and other drug combinations including deuterated internal standards that coelute (ISd,c) with target drugs, by selected-ion monitoring (SIM) and full-scan mass spectrometry. We show that, by SIM analysis, detecting the presence of an interferent is dependent on the specific IS used for the assay. When an ISd,c is used, the presence of another coeluting substance (interferent) suggests that the intensity of IS ions is substantially diminished, because the interferent affects both the ISd,c and target drug. When a noncoeluting IS (ISnc) is used, the interferent cannot be discerned unless it coincidently contains one or more of the ions monitored for either the target drug or ISnc. Under full-scan analysis, a coeluting interferent is directly discernable by examining the total ion gas chromatogram.


AMB Express ◽  
2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Jia Wang ◽  
Jiawei Liang ◽  
Yonghong Li ◽  
Lingmin Tian ◽  
Yongjun Wei

AbstractXylanases are widely used enzymes in the food, textile, and paper industries. Most efficient xylanases have been identified from lignocellulose-degrading microbiota, such as the microbiota of the cow rumen and the termite hindgut. Xylanase genes from efficient pulp and paper wastewater treatment (PPWT) microbiota have been previously recovered by metagenomics, assigning most of the xylanase genes to the GH10 family. In this study, a total of 40 GH10 family xylanase genes derived from a certain PPWT microbiota were cloned and expressed in Escherichia coli BL21 (DE3). Among these xylanase genes, 14 showed xylanase activity on beechwood substrate. Two of these, PW-xyl9 and PW-xyl37, showed high activities, and were purified to evaluate their xylanase properties. Values of optimal pH and temperature for PW-xyl9 were pH 7 and 60 ℃, respectively, while those for PW-xyl37 were pH 7 and 55 ℃, respectively; their specific xylanase activities under optimal conditions were 470.1 U/mg protein and 113.7 U/mg protein, respectively. Furthermore, the Km values of PW-xyl9 and PW-xyl37 were determined as 8.02 and 18.8 g/L, respectively. The characterization of these two xylanases paves the way for potential application in future pulp and paper production and other industries, indicating that PPWT microbiota has been an undiscovered reservoir of efficient lignocellulase genes. This study demonstrates that a metagenomic approach has the potential to screen efficient xylanases of uncultured microorganisms from lignocellulose-degrading microbiota. In a similar way, other efficient lignocellulase genes might be identified from PPWT treatment microbiota in the future.


Sign in / Sign up

Export Citation Format

Share Document