scholarly journals Biodegradable and pH Sensitive Peptide Based Hydrogel as Controlled Release System for Antibacterial Wound Dressing Application

Molecules ◽  
2018 ◽  
Vol 23 (12) ◽  
pp. 3383 ◽  
Author(s):  
Jie Zhu ◽  
Hua Han ◽  
Ting-Ting Ye ◽  
Fa-Xue Li ◽  
Xue-Li Wang ◽  
...  

The stimuli-sensitive and biodegradable hydrogels are promising biomaterials as controlled drug delivery systems for diverse biomedical applications. In this study, we construct hybrid hydrogels combined with peptide-based bis-acrylate and acrylic acid (AAc). The peptide-based bis-acrylate/AAc hybrid hydrogel displays an interconnected and porous structure by scanning electron microscopy (SEM) observation and exhibits pH-dependent swelling property. The biodegradation of hybrid hydrogels was characterized by SEM and weight loss, and the results showed the hydrogels have a good enzymatic biodegradation property. The mechanical and cytotoxicity properties of the hydrogels were also tested. Besides, triclosan was preloaded during the hydrogel formation for drug release and antibacterial studies. In summary, the peptide-based bis-acrylate/AAc hydrogel with stimuli sensitivity and biodegradable property may be excellent candidates as drug delivery systems for antibacterial wound dressing application.

2019 ◽  
Vol 25 (11) ◽  
pp. 1335-1344 ◽  
Author(s):  
Maryam Rahmati ◽  
Zahra Alipanahi ◽  
Masoud Mozafari

Background: Over the past two decades, there have been substantial progress and a growing body of research on using natural polymeric biomaterials in emerging biomedical applications. Among different natural biopolymers, polysaccharides have gained considerable attraction among biomedical scientists and surgeons due to their biocompatibility, biodegradability, anti-inflammatory, and antimicrobial properties. In recent years, algalbased polysaccharides including agar, alginate, and carrageenan, have been broadly suggested for different biomedical applications. Methods: The aim of this paper is discussing various possible applications of algal-based polysaccharides in biomedical engineering particularly in controlled drug delivery systems. The main properties of each algal polysaccharide will be discussed, and particular drug delivery applications will be presented. Results: Algal polysaccharides can be detected in a group of photosynthetic unite as their key biomass constituents. They provide a range of variety in their size, shape, liquefaction, chemical stability, and crosslinking ability. In addition, algal polysaccharides have shown exceptional gelling properties including stimuli-responsive behavior, softness, and swelling properties. Conclusion: All the mentioned properties of alga polysaccharides lead to their successful usage in biomedical applications specially targeted and controlled drug delivery systems such as particles, capsules, and gels.


2020 ◽  
Vol 21 ◽  
Author(s):  
Dickson Pius Wande ◽  
Qin Cui ◽  
Shijie Chen ◽  
Cheng Xu ◽  
Hui Xiong ◽  
...  

: As a unique and pleiotropic polymer, d-alpha-tocopheryl polyethylene glycol succinate (Tocophersolan) is a polymeric synthetic version of vitamin E. Tocophersolan has attracted enormous attention as a versatile excipient in different biomedical applications including drug delivery systems and nutraceuticals. The multiple inherent properties of Tocophersolan make it play flexible roles in drug delivery system design, including excipients with outstanding biocompatibility, solubilizer with the ability of promoting drug dissolution, drug permeation enhancer, P-glycoprotein inhibitor and anticancer compound. For these reasons, Tocophersolan has been widely used for improving the bioavailability of numerous pharmaceutical active ingredients. Tocophersolan has been approved by stringent regulatory authorities (such as US FDA, EMA, and PMDA) as a safe pharmaceutical excipient. In this review, we systematically curated current advances in nano-based delivery systems consisting of Tocophersolan with possibilities for futuristic applications in drug delivery, gene therapy, and nanotheranostic.


Author(s):  
Mazaher Ahmadi ◽  
Tayyebeh Madrakian ◽  
Arash Ghoorchian ◽  
Mahdie Kamalabadi ◽  
Abbas Afkhami

2018 ◽  
Vol 6 (4) ◽  
pp. 877-884 ◽  
Author(s):  
Po Li ◽  
Yue Yan ◽  
Binlong Chen ◽  
Pan Zhang ◽  
Siling Wang ◽  
...  

In recent years, multifunctional nanoparticles have attracted much research interest in various biomedical applications such as biosensors, diagnosis, and drug delivery systems.


ChemMedChem ◽  
2017 ◽  
Vol 12 (19) ◽  
pp. 1600-1609 ◽  
Author(s):  
Xinyu Hu ◽  
Yongmei Wang ◽  
Liangliang Zhang ◽  
Man Xu ◽  
Jianfa Zhang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document