scholarly journals Spatial Frequency Response of Epoxy-Based Volume Holographic Recording Material

Molecules ◽  
2019 ◽  
Vol 24 (6) ◽  
pp. 1018
Author(s):  
Tina Sabel

Holographic volume phase gratings are recorded in an epoxy-based, free-surface, volume holographic recording material. Light-induced gratings are formed by photo-triggered mass migration caused by component diffusion. The material resolution enables a wide range of pattern spacings, to record both transmission and reflection holograms with many different spatial frequencies. An optimum spatial frequency response is found between the low spatial frequency roll-off and the high spatial frequency cut-off. The influence of the energy density of exposure on the spatial frequency response is investigated. Secondary volume holographic gratings (parasitic gratings) are observed in the high frequency range. The possibility of distinguishing the regular grating from the secondary grating is discussed in the form of probe wavelength detuning.

Perception ◽  
1997 ◽  
Vol 26 (8) ◽  
pp. 1047-1058 ◽  
Author(s):  
Howard C Hughes ◽  
David M Aronchick ◽  
Michael D Nelson

It has previously been observed that low spatial frequencies (≤ 1.0 cycles deg−1) tend to dominate high spatial frequencies (≥ 5.0 cycles deg−1) in several types of visual-information-processing tasks. This earlier work employed reaction times as the primary performance measure and the present experiments address the possibility of low-frequency dominance by evaluating visually guided performance of a completely different response system: the control of slow-pursuit eye movements. Slow-pursuit gains (eye velocity/stimulus velocity) were obtained while observers attempted to track the motion of a sine-wave grating. The drifting gratings were presented on three types of background: a uniform background, a background consisting of a stationary grating, or a flickering background. Low-frequency dominance was evident over a wide range of velocities, in that a stationary high-frequency component produced little disruption in the pursuit of a drifting low spatial frequency, but a stationary low frequency interfered substantially with the tracking of a moving high spatial frequency. Pursuit was unaffected by temporal modulation of the background, suggesting that these effects are due to the spatial characteristics of the stationary grating. Similar asymmetries were observed with respect to the stability of fixation: active fixation was less stable in the presence of a drifting low frequency than in the presence of a drifting high frequency.


1998 ◽  
Vol 15 (4) ◽  
pp. 585-595 ◽  
Author(s):  
CONG YU ◽  
DENNIS M. LEVI

A psychophysical analog to cortical receptive-field end-stopping has been demonstrated previously in spatial filters tuned to a wide range of spatial frequencies (Yu & Levi, 1997a). The current study investigated tuning characteristics in psychophysical spatial filter end-stopping. When a D6 (the sixth derivative of a Gaussian) target is masked by a center mask (placed in the putative spatial filter center), two end-zone masks (placed in the filter end-zones) reduce thresholds. This “end-stopping” effect (the reduction of masking induced by end-zone masks) was measured at various spatial frequencies and orientations of end-zone masks. End-stopping reached its maximal strength when the spatial frequency and/or orientation of the end-zone masks matched the spatial frequency and/or orientation of the target and center mask, showing spatial-frequency tuning and orientation tuning. The bandwidths of spatial-frequency and orientation tuning functions decreased with increasing target spatial frequency. At larger orientation differences, however, end-zone masks induced a secondary facilitation effect, which was maximal when the spatial frequency of end-zone masks equated the target spatial frequency. This facilitation effect might be related to certain types of contour and texture perception, such as perceptual pop-out.


Polymers ◽  
2021 ◽  
Vol 13 (20) ◽  
pp. 3517
Author(s):  
Horst Berneth ◽  
Friedrich Karl Bruder ◽  
Thomas Fäcke ◽  
Sven Hansen ◽  
Koichi Kawamura ◽  
...  

Versatile substituted electron-deficient trichloromethylarenes can easily be synthesized and combined with a Safranine O/triarylalkylborate salt to form a highly efficient three-component photo-initiation system that starts free radical polymerization to finally form holographic gratings with a single-pulsed laser. The mechanism of this photo-initiation most likely relies on an electron transfer from the borate salt into the semi-occupied HOMO of the excited dye molecule Safranine O, which after fragmentation generates an initiating alkyl radical and longer-lived dye radical species. This dye radical is most probably oxidized by the newly introduced trichloromethylarene derivative as an electron acceptor. The two generated radicals from one absorbed photon initiate the photopolymerization and form index gratings in a suitable holographic recording material. This process is purely photonic and does not require further non-photonic post treatments.


2017 ◽  
Author(s):  
Ghaith Tarawneh ◽  
Vivek Nityananda ◽  
Ronny Rosner ◽  
Steven Errington ◽  
William Herbert ◽  
...  

AbstractRecently, we showed a novel property of the Hassenstein-Reichardt detector: namely, that insect motion detection can be masked by “invisible” noise, i.e. visual noise presented at spatial frequencies to which the animals do not respond when presented as a signal. While this study compared the effect of noise on human and insect motion perception, it used different ways of quantifying masking in two species. This was because the human studies measured contrast thresholds, which were too time-consuming to acquire in the insect given the large number of stimulus parameters examined. Here, we run longer experiments in which we obtained contrast thresholds at just two signal and two noise frequencies. We examine the increase in threshold produced by noise at either the same frequency as the signal, or a different frequency. We do this in both humans and praying mantises (Sphodromantis lineola), enabling us to compare these species directly in the same paradigm. Our results confirm our earlier finding: whereas in humans, visual noise masks much more effectively when presented at the signal spatial frequency, in insects, noise is roughly equivalently effective whether presented at the same frequency or a lower frequency. In both species, visual noise presented at a higher spatial frequency is a less effective mask.Summary StatementWe here show that despite having similar motion detection systems, insects and humans differ in the effect of low and high spatial frequency noise on their contrast thresholds.


2012 ◽  
Vol 25 (0) ◽  
pp. 121
Author(s):  
Marcia Grabowecky ◽  
Aleksandra Sherman ◽  
Satoru Suzuki

We have previously demonstrated a linear perceptual relationship between auditory amplitude-modulation (AM) rate and visual spatial-frequency using gabors as the visual stimuli. Can this frequency-based auditory–visual association influence perception of natural scenes? Participants consistently matched specific auditory AM rates to diverse visual scenes (nature, urban, and indoor). A correlation analysis indicated that higher subjective density ratings were associated with faster AM-rate matches. Furthermore, both the density ratings and AM-rate matches were relatively scale invariant, suggesting that the underlying crossmodal association is between visual coding of object-based density and auditory coding of AM rate. Based on these results, we hypothesized that concurrently presented fast (7 Hz) or slow (2 Hz) AM-rates might influence how visual attention is allocated to dense or sparse regions within a scene. We tested this hypothesis by monitoring eye movements while participants examined scenes for a subsequent memory task. To determine whether fast or slow sounds guided eye movements to specific spatial frequencies, we computed the maximum contrast energy at each fixation across 12 spatial frequency bands ranging from 0.06–10.16 cycles/degree. We found that the fast sound significantly guided eye movements toward regions of high spatial frequency, whereas the slow sound guided eye movements away from regions of high spatial frequency. This suggests that faster sounds may promote a local scene scanning strategy, acting as a ‘filter’ to individuate objects within dense regions. Our results suggest that auditory AM rate and visual object density are crossmodally associated, and that this association can modulate visual inspection of scenes.


2016 ◽  
Vol 6 (1) ◽  
Author(s):  
Zhen Ren ◽  
Jiawei Zhou ◽  
Zhimo Yao ◽  
Zhengchun Wang ◽  
Nini Yuan ◽  
...  

Abstract It is well known that, in humans, contrast sensitivity training at high spatial frequency (SF) not only leads to contrast sensitivity improvement, but also results in an improvement in visual acuity as assessed with gratings (direct effect) or letters (transfer effect). However, the underlying neural mechanisms of this high spatial frequency training improvement remain to be elucidated. In the present study, we examined four properties of neurons in primary visual cortex (area 17) of adult cats that exhibited significantly improved acuity after contrast sensitivity training with a high spatial frequency grating and those of untrained control cats. We found no difference in neuronal contrast sensitivity or tuning width (Width) between the trained and untrained cats. However, the trained cats showed a displacement of the cells’ optimal spatial frequency (OSF) to higher spatial frequencies as well as a larger neuronal signal-to-noise ratio (SNR). Furthermore, both the neuronal differences in OSF and SNR were significantly correlated with the improvement of acuity measured behaviorally. These results suggest that striate neurons might mediate the perceptual learning-induced improvement for high spatial frequency stimuli by an alteration in their spatial frequency representation and by an increased SNR.


1994 ◽  
Vol 72 (5) ◽  
pp. 2134-2150 ◽  
Author(s):  
Y. X. Zhou ◽  
C. L. Baker

1. Single cortical neurons are known to respond to visual stimuli containing Fourier components only in a narrow range of spatial frequencies. This investigation demonstrates that some neurons in cat area 17 and 18 can also respond to certain stimuli that have no Fourier components inside the cell's luminance spatial frequency passband. 2. To study such “non-Fourier” responses, we used envelope stimuli that consisted of a high-spatial-frequency sinusoidal luminance grating (carrier) whose contrast was modulated by a low-spatial frequency sine wave (envelope). There was no Fourier component at the apparent periodicity of the envelope spatial frequency. However, some cells responded to such a “phantom” component of the envelope modulation when it fell inside the cell's luminance spatial frequency passband while all the real Fourier components in the stimuli were outside. 3. We conducted extensive control experiments to eliminate the possibility of producing artifactual responses to the envelope stimuli due to any small residual nonlinearity of the z-linearized CRT screen. The control experiments included 1) testing of screen linearity to ensure that the effect from the residual screen nonlinearity was no larger than the sensitivity level of visual responses and 2) comparing the responses to envelope stimuli with the responses to the equivalent contrast of the artifact produced by the screen nonlinearity. All these control experiments indicated that any effect of screen nonlinearity did not contribute significantly to the neural envelope responses. 4. We performed a statistical analysis to obtain an index of relative strength of envelope responses for each cell and to objectively classify cells as “envelope-responsive” or “non-envelope-responsive.”(ABSTRACT TRUNCATED AT 250 WORDS)


2015 ◽  
Vol 28 (1-2) ◽  
pp. 1-10 ◽  
Author(s):  
Yasuhiro Takeshima ◽  
Jiro Gyoba

When a brief single flash is presented simultaneously with two brief beeps, the number of presented flashes is often perceived as two. This phenomenon is referred to as the fission illusion. Several effects related to the fission illusion have been investigated using both psychophysical and neurophysiological methods. The present study examined the effects of spatial frequency on the fission illusion. At a low spatial frequency, transient channels respond preferably; conversely, sustained channels respond preferably at a high spatial frequency. Sustained channels differ in temporal properties from transient channels and are characterized by poor temporal resolution and slow-onset responses. In our previous study, visual stimuli presented at a slow processing speed were not conducive to the fission illusion. Therefore, we hypothesized that the fission illusion would not be difficult to observe when using high spatial frequencies. The results indicated that the degree of the perceived illusory second flash was reduced when spatial frequency was high as compared to when it was is low. Furthermore, according to signal detection theory, this difference between high and low spatial frequencies was not attributed to participants’ response biases. Therefore, the fission illusion likely will not occur in conditions of slow processing speed and long response latencies in sustained channels, which respond preferably to high spatial frequency stimuli. Overall, the results indicated that the fission illusion was affected by temporal characteristics of lower-order sensory processing stages.


1999 ◽  
Vol 16 (3) ◽  
pp. 527-540 ◽  
Author(s):  
ISABELLE MARESCHAL ◽  
CURTIS L. BAKER

Neurons in the mammalian visual cortex have been found to respond to second-order features which are not defined by changes in luminance over the retina (Albright, 1992; Zhou & Baker, 1993, 1994, 1996; Mareschal & Baker, 1998a,b). The detection of these stimuli is most often accounted for by a separate nonlinear processing stream, acting in parallel to the linear stream in the visual system. Here we examine the two-dimensional spatial properties of these nonlinear neurons in area 18 using envelope stimuli, which consist of a high spatial-frequency carrier whose contrast is modulated by a low spatial-frequency envelope. These stimuli would fail to elicit a response in a conventional linear neuron because they are designed to contain no spatial-frequency components overlapping the neuron's luminance defined passband. We measured neurons' responses to these stimuli as a function of both the relative spatial frequencies and relative orientations of the carrier and envelope. Neurons' responses to envelope stimuli were narrowband to the carrier spatial frequency, with optimal values ranging from 8- to 30-fold higher than the envelope spatial frequencies. Neurons' responses to the envelope stimuli were strongly dependent on the orientation of the envelope and less so on the orientation of the carrier. Although the selectivity to the carrier orientation was broader, neurons' responses were clearly tuned, suggesting that the source of nonlinear input is cortical. There was no fixed relationship between the optimal carrier and envelope spatial frequencies or orientations, such that nonlinear neurons responding to these stimuli could perhaps respond to a variety of stimuli defined by changes in scale or orientation.


Sign in / Sign up

Export Citation Format

Share Document