scholarly journals Synthesis, Antibacterial Activities, Mode of Action and Acute Toxicity Studies of New Oxazolidinone-Fluoroquinolone Hybrids

Molecules ◽  
2019 ◽  
Vol 24 (8) ◽  
pp. 1641 ◽  
Author(s):  
Liu ◽  
Shao ◽  
Li ◽  
Cui ◽  
Li ◽  
...  

To combat bacterial resistance, a series of new oxazolidinone-fluoroquinolone hybrids have been synthesized and characterized. All synthetic hybrids were preliminarily evaluated for their in vitro antibacterial activities against 6 standard strains and 3 clinical isolates. The majority of hybrids displayed excellent activities against Gram-positive bacteria, but limited activities against Gram-negative bacteria. Hybrids OBP-4 and OBP-5 were found to be the most promising compounds. Further, in vitro antibacterial activities, mode of action and acute toxicity in mice of hybrids OBP-4 and OBP-5 were investigated. Hybrids OBP-4 and OBP-5 exhibited potent activities against Gram-positive bacteria, including drug-resistant strains. Correspondingly, studies on the mode of action of hybrids OBP-4 and OBP-5 indicated a strong inhibitory activity on protein synthesis by binding the active site of 50S subunit, but a weak inhibitory action on DNA synthesis. In addition, LD50 values of hybrids OBP-4 and OBP-5 in the acute oral toxicity were larger than 2000 mg/kg, suggesting a good safety profile.

2006 ◽  
Vol 50 (6) ◽  
pp. 2261-2264 ◽  
Author(s):  
Hee-Soo Park ◽  
Hyun-Joo Kim ◽  
Min-Jung Seol ◽  
Dong-Rack Choi ◽  
Eung-Chil Choi ◽  
...  

ABSTRACT DW-224a showed the most potent in vitro activity among the quinolone compounds tested against clinical isolates of gram-positive bacteria. Against gram-negative bacteria, DW-224a was slightly less active than the other fluoroquinolones. The in vivo activities of DW-224a against gram-positive bacteria were more potent than those of other quinolones.


RSC Advances ◽  
2014 ◽  
Vol 4 (99) ◽  
pp. 56031-56040 ◽  
Author(s):  
Ilaria Rago ◽  
Chandrakanth Reddy Chandraiahgari ◽  
Maria P. Bracciale ◽  
Giovanni De Bellis ◽  
Elena Zanni ◽  
...  

ZnO micro and nanorods, produced through simple and inexpensive techniques, resulted to be strong antimicrobials against Gram-positive bacteria, in vitro as well as in vivo, by altering cell outer structures like membrane and exopolysaccharides.


1998 ◽  
Vol 42 (11) ◽  
pp. 2943-2949 ◽  
Author(s):  
Makoto Matsumoto ◽  
Hisashi Tamaoka ◽  
Hiroshi Ishikawa ◽  
Mikio Kikuchi

ABSTRACT OPC-20011, a new parenteral 2-oxaisocephem antibiotic, has an oxygen atom at the 2- position of the cephalosporin frame. OPC-20011 had the best antibacterial activities against gram-positive bacteria, including methicillin-resistant Staphylococcus aureus (MRSA), Enterococcus faecalis, and penicillin-resistant Streptococcus pneumoniae: MICs at which 90% of the isolates were inhibited were 6.25, 6.25, and 0.05 μg/ml, respectively. Its activity is due to a high affinity of the penicillin-binding protein 2′ in MRSA, an affinity which was approximately 1,050 times as high as that for flomoxef. Against gram-negative bacteria, OPC-20011 also showed antibacterial activities similar to those of ceftazidime. The in vivo activities of OPC-20011 were comparable to or greater than those of reference compounds in murine models of systemic infection caused by gram-positive and -negative pathogens. OPC-20011 was up to 10 times as effective as vancomycin against MRSA infections in mice. This better in vivo efficacy is probably due to the bactericidal activity of OPC-20011, while vancomycin showed bacteriostatic activity against MRSA. OPC-20011 produced a significant decrease of viable counts in lung tissue at a dose of 2.5 mg/kg of body weight, an efficacy similar to that of ampicillin at a dose of 10 to 20 mg/kg on an experimental murine model of respiratory tract infection caused by non-ampicillin-susceptibleS. pneumoniae T-0005. The better therapeutic efficacy of OPC-20011 was considered to be due to its potent antibacterial activity and low affinity for serum proteins of experimental animals (29% in mice and 6.4% in rats).


2011 ◽  
Vol 8 (3) ◽  
pp. 1120-1123 ◽  
Author(s):  
Bahram Letafat ◽  
Negar Mohammadhosseini ◽  
Ali Asadipour ◽  
Alireza Foroumadi

In the present study we report the synthesis and antibacterial activity of a new series 2-(1-methyl-4-nitro-1H-imidazol-5-ylsulfonyl)-1,3,4-thiadiazoles (6a-c). Compounds6a-cwere testedin vitroby the conventional agar dilution method against a panel of microorganisms including gram-negative and gram-positive bacteria. Compound6bwith 5-(5-nitrofuran-2-yl)-residue on 1,3,4-thiadiazole scaffold have shown promising antibacterial activities against gram-positive bacteria includingStaphylococcus aureus, Staphylococcus epidermidisandBacillus subtilis.


2021 ◽  
Vol 72 (1) ◽  
pp. 79-95
Author(s):  
Awwad Abdoh Radwan ◽  
Fares Kaed Aanazi ◽  
Mohammed Al-Agamy ◽  
Gamal Mohammad Mahrous

Abstract Longstanding and firsthand infectious diseases are challenging community health threats. A new series of isatin derivatives bearing β-hydroxy ketone, chalcone, or spiro-heterocycle moiety, was synthesized in a good yield. Chemical structures of the synthesized compounds were elucidated using spectroscopic techniques and elemental analysis. Antibacterial activities of the compounds were then evaluated in vitro and by in silico modeling. The compounds were more active against Gram-positive bacteria, Staphylococcus aureus (MIC = 0.026–0.226 mmol L−1) and Bacillus subtilis (MIC = 0.348–1.723 mmol L–1) than against Gram-negative bacteria (MIC = 0.817–7.393 mmol L–1). Only 3-hydroxy-3-(2-(2,5-dimethylthiophen-3-yl)-2-oxoethyl)indolin-2-one (1b) was found as active as imipenem against S. aureus (MIC = 0.026 mmol L–1). In silico docking of the compounds in the binding sites of a homology modeled structure of S. aureus histidine kinase-Walk allowed us to shed light on the binding mode of these novel inhibitors. The highest antibacterial activity of 1b is consistent with its highest docking score values against S. aureus histidine kinase.


2007 ◽  
Vol 30 (9) ◽  
pp. 757-763 ◽  
Author(s):  
J.W. Costerton ◽  
L. Montanaro ◽  
C.r. Arciola

The status of population density is communicated among bacteria by specific secreted molecules, called pheromones or autoinducers, and the control mechanism is called “quorum-sensing”. Quorum-sensing systems regulate the expression of a panel of genes, allowing bacteria to adapt to modified environmental conditions at a high density of population. The two known different quorum systems are described as the LuxR-LuxI system in gram-negative bacteria, which uses an N-acyl-homoserine lactone (AHL) as signal, and the agr system in gram-positive bacteria, which uses a peptide-tiolactone as signal and the RNAIII as effector molecules. Both in gram-negative and in gram-positive bacteria, quorum-sensing systems regulate the expression of adhesion mechanisms (biofilm and adhesins) and virulence factors (toxins and exoenzymes) depending on population cell density. In gram-negative Pseudomonas aeruginosa, analogs of signaling molecules such as furanone analogs, are effective in attenuating bacterial virulence and controlling bacterial infections. In gram-positive Staphylococcus aureus, the quorum-sensing RNAIII-inhibiting peptide (RIP), tested in vitro and in animal infection models, has been proved to inhibit virulence and prevent infections. Attenuation of bacterial virulence by quorum-sensing inhibitors, rather than by bactericidal or bacteriostatic drugs, is a highly attractive concept because these antibacterial agents are less likely to induce the development of bacterial resistance.


Molecules ◽  
2021 ◽  
Vol 26 (8) ◽  
pp. 2110
Author(s):  
Lamya H. Al-Wahaibi ◽  
Ahmed A. B. Mohamed ◽  
Samar S. Tawfik ◽  
Hanan M. Hassan ◽  
Ali A. El-Emam

The reaction of 5-(3,4-dimethoxyphenyl)-1,3,4-oxadiazole-2(3H)-thione 3 with formaldehyde solution and primary aromatic amines or 1-substituted piperazines, in ethanol at room temperature yielded the corresponding N-Mannich bases 3-arylaminomethyl-5-(3,4-dimethoxyphenyl)-1,3,4-oxadiazole-2(3H)-thiones 4a–l or 3-[(4-substituted piperazin-1-yl)methyl]-5-(3,4-dimethoxyphenyl)-1,3,4-oxadiazole-2(3H)-thiones 5a–d, respectively. The in vitro inhibitory activity of compounds 4a–l and 5a–d was assessed against pathogenic Gram-positive, Gram-negative bacteria, and the yeast-like pathogenic fungus Candida albicans. The piperazinomethyl derivatives 5c and 5d displayed broad-spectrum antibacterial activities the minimal inhibitory concentration (MIC) 0.5–8 μg/mL) and compounds 4j, 4l, 5a, and 5b showed potent activity against the tested Gram-positive bacteria. In addition, the anti-proliferative activity of the compounds was evaluated against prostate cancer (PC3), human colorectal cancer (HCT-116), human hepatocellular carcinoma (HePG-2), human epithelioid carcinoma (HeLa), and human breast cancer (MCF7) cell lines. The optimum anti-proliferative activity was attained by compounds 4l, 5a, 5c, and 5d.


2021 ◽  
Vol 9 (3) ◽  
pp. 592
Author(s):  
Mohamed Belal Hamed ◽  
Ewa Burchacka ◽  
Liselotte Angus ◽  
Arnaud Marchand ◽  
Jozefien De Geyter ◽  
...  

The increasing problem of bacterial resistance to antibiotics underscores the urgent need for new antibacterials. Protein export pathways are attractive potential targets. The Sec pathway is essential for bacterial viability and includes components that are absent from eukaryotes. Here, we used a new high-throughput in vivo screen based on the secretion and activity of alkaline phosphatase (PhoA), a Sec-dependent secreted enzyme that becomes active in the periplasm. The assay was optimized for a luminescence-based substrate and was used to screen a ~240K small molecule compound library. After hit confirmation and analoging, 14 HTS secretion inhibitors (HSI), belonging to eight structural classes, were identified with IC50 < 60 µM. The inhibitors were evaluated as antibacterials against 19 Gram-negative and Gram-positive bacterial species (including those from the WHO’s top pathogens list). Seven of them—HSI#6, 9; HSI#1, 5, 10; and HSI#12, 14—representing three structural families, were bacteriocidal. HSI#6 was the most potent hit against 13 species of both Gram-negative and Gram-positive bacteria with IC50 of 0.4 to 8.7 μM. HSI#1, 5, 9 and 10 inhibited the viability of Gram-positive bacteria with IC50 ~6.9–77.8 μM. HSI#9, 12, and 14 inhibited the viability of E. coli strains with IC50 < 65 μM. Moreover, HSI#1, 5 and 10 inhibited the viability of an E. coli strain missing TolC to improve permeability with IC50 4 to 14 μM, indicating their inability to penetrate the outer membrane. The antimicrobial activity was not related to the inhibition of the SecA component of the translocase in vitro, and hence, HSI molecules may target new unknown components that directly or indirectly affect protein secretion. The results provided proof of the principle that the new broad HTS approach can yield attractive nanomolar inhibitors that have potential as new starting compounds for optimization to derive potential antibiotics.


2006 ◽  
Vol 50 (4) ◽  
pp. 1228-1237 ◽  
Author(s):  
Nagraj Mani ◽  
Christian H. Gross ◽  
Jonathan D. Parsons ◽  
Brian Hanzelka ◽  
Ute Müh ◽  
...  

ABSTRACT Antibiotics with novel mechanisms of action are becoming increasingly important in the battle against bacterial resistance to all currently used classes of antibiotics. Bacterial DNA gyrase and topoisomerase IV (topoIV) are the familiar targets of fluoroquinolone and coumarin antibiotics. Here we present the characterization of two members of a new class of synthetic bacterial topoII ATPase inhibitors: VRT-125853 and VRT-752586. These aminobenzimidazole compounds were potent inhibitors of both DNA gyrase and topoIV and had excellent antibacterial activities against a wide spectrum of problematic pathogens responsible for both nosocomial and community-acquired infections, including staphylococci, streptococci, enterococci, and mycobacteria. Consistent with the novelty of their structures and mechanisms of action, antibacterial potency was unaffected by commonly encountered resistance phenotypes, including fluoroquinolone resistance. In time-kill assays, VRT-125853 and VRT-752586 were bactericidal against Staphylococcus aureus, Streptococcus pneumoniae, Enterococcus faecalis, and Haemophilus influenzae, causing 3-log reductions in viable cells within 24 h. Finally, similar to the fluoroquinolones, relatively low frequencies of spontaneous resistance to VRT-125853 and VRT-752586 were found, a property consistent with their in vitro dual-targeting activities.


Sign in / Sign up

Export Citation Format

Share Document