scholarly journals Antimicrobial and Phytotoxic Activity of Origanum heracleoticum and O. majorana Essential Oils Growing in Cilento (Southern Italy)

Molecules ◽  
2019 ◽  
Vol 24 (14) ◽  
pp. 2576 ◽  
Author(s):  
Teresa Della Pepa ◽  
Hazem S. Elshafie ◽  
Raffaele Capasso ◽  
Vincenzo De Feo ◽  
Ippolito Camele ◽  
...  

There is a growing interest in a potential use of essential oils (EOs) as a replacement for traditional pesticides and herbicides. The aims of this study were to: (i) Identify the chemical composition of the two EOs derived from Origanum heracleoticum L. and O. majorana L., (ii) evaluate the in vitro antifungal activity of the EOs against some postharvest phytopathogens (Botrytis cinerea, Penicillium expansum, Aspergillus niger and Monilinia fructicola), (iii) evaluate the in vitro antibacterial activity against Bacillus megaterium, Clavibacter michiganensis, Xanthomonas campestris, Pseudomonas fluorescens and P. syringae pv. phaseolicola, (iv) evaluate the effect of both studied EOs on the spore germination percentage and their minimum inhibitory concentration (MIC) against M. fructicola, and (v) study the possible phytotoxicity of the two EOs and their major constituents, carvacrol for O. heracleoticum and terpinen-4-ol for O. majorana, against tha germination and initial radicle growth of radish, lettuce, garden cress and tomato. The two EOs demonstrated promising in vitro antimicrobial and antifungal activities against all tested microorganisms. EOs showed high inhibition of spore germination percentage at the minimal inhibitory concentration of 500 and 2000 µg/mL, respectively. Moreover, both germination and radical elongation of selected plant species were sensitive to the oils.

2014 ◽  
Vol 9 (12) ◽  
pp. 1934578X1400901 ◽  
Author(s):  
Lucéia Fátima Souza ◽  
Ingrid Bergman Inchausti de Barros ◽  
Emilia Mancini ◽  
Laura De Martino ◽  
Elia Scandolera ◽  
...  

The chemical composition of the essential oils of Pereskia aculeata Mill. and P. grandifolia Haw. (Cactaceae), grown in Brazil, was studied by means of GC and GC-MS. In all, 37 compounds were identified, 30 for P. aculeata and 15 for P. grandifolia. Oxygenated diterpenes are the main constituents, both in the oil of P. grandifolia (55.5%) and in that of P. aculeata (29.4%). The essential oils were evaluated for their in vitro phytotoxic activity against germination and initial radicle growth of Raphanus sativus L., Sinapis arvensis L., and Phalaris canariensis L. seeds. The essential oil of P. grandifolia, at all doses tested, significantly inhibited the radicle elongation of R. sativus. Moreover, the antimicrobial activity of the essential oils was assayed against ten bacterial strains. The essential oils showed weak inhibitory activity against the Gram-positive pathogens.


2020 ◽  
Vol 8 (12) ◽  
pp. 2015
Author(s):  
Federica Antonelli ◽  
Marco Bartolini ◽  
Marie-Laure Plissonnier ◽  
Alfonso Esposito ◽  
Giulia Galotta ◽  
...  

Waterlogged archaeological wood is exposed to a high risk of biological degradation during the post-excavation phases of storage and restoration. For this reason, often biocides must be used to preserve wooden remains. In the present work three essential oils (cinnamon, wild thyme, and common thyme) were tested as possible alternative biocides to use in the preservation of waterlogged archaeological wood. The oils were first tested in vitro to establish the minimum inhibitory concentration (MIC) and to evaluate the biocidal activity on selected fungal strains. Then, the established MIC was applied on waterlogged archaeological wood samples and during an actual restoration treatment. The effectiveness of the oils was evaluated through cultural analyses, ATP quantification, and next-generation sequencing. The results showed that the oils caused a significant decrease in the vitality of fungal mycelia grown in vitro and of the microbiota present in treated wood and storage water. Furthermore, an influence on the composition of the bacterial communities of treated wood samples was observed. Although further tests are needed to evaluate interferences with the materials used during restoration procedures, essential oils could be considered as a possible alternative to the currently used biocide.


2014 ◽  
Vol 9 (7) ◽  
pp. 1934578X1400900
Author(s):  
Lucéia Fátima Souza ◽  
Ingrid Bergman Inchausti de Barros ◽  
Emilia Mancini ◽  
Laura De Martino ◽  
Elia Scandolera ◽  
...  

The chemical composition of the essential oil of Anredera cordifolia (Ten.) Steenis (Basellaceae), grown in Brazil, was studied by means of GC and GC-MS analysis. In all, 19 compounds were identified, accounting for 91.6% of the total oil; hydrocarbons were the main constituents (67.7%). The essential oil was evaluated for its in vitro potential phytotoxic activity against germination and initial radicle growth of Raphanus sativus L., Sinapis arvensis L., and Phalaris canariensis L. seeds. At 1.25 μg/mL and 0.625 μg/mL, the oil significantly promoted the germination of S. arvensis. Moreover, the antimicrobial activity of the essential oil was assayed against ten bacterial strains. The essential oil showed a weak inhibitory activity against the Gram-positive pathogens.


2016 ◽  
Vol 2016 ◽  
pp. 1-8 ◽  
Author(s):  
Awol Mekonnen ◽  
Berhanu Yitayew ◽  
Alemnesh Tesema ◽  
Solomon Taddese

In this study, thein vitroantimicrobial activities of four plant essential oils (T. schimperi,E. globulus,R. officinalis, andM. Chamomilla) were evaluated against bacteria and fungi. The studies were carried out using agar diffusion method for screening the most effective essential oils and agar dilution to determine minimum inhibitory concentration of the essential oils. Results of this study revealed that essential oils ofT. schimperi,E. globulus, andR. officinaliswere active against bacteria and some fungi. The antimicrobial effect ofM. chamomillawas found to be weaker and did not show any antimicrobial activity. The minimum inhibitory concentration values ofT. schimperiwere<15.75 mg/mL for most of the bacteria and fungi used in this study. The minimum inhibitory concentration values of the other essential oils were in the range of 15.75–36.33 mg/mL against tested bacteria. This study highlighted the antimicrobial activity of the essential oil ofE. globulus,M. chamomilla,T. Schimperi, andR. officinalis. The results indicated thatT. schimperihave shown strong antimicrobial activity which could be potential candidates for preparation of antimicrobial drug preparation.


2019 ◽  
Vol 136 ◽  
pp. 06006
Author(s):  
Qiyu Lu ◽  
Ji Liu ◽  
Caihong Tu ◽  
Juan Li ◽  
Chunlong Lei ◽  
...  

To determine the antibacterial effect of 34 plant essential oils on Alternaria alternata, 34 plant essential oils such as asarum essential oil, garlic essential oil, and mustard essential oil are used as inhibition agents to isolate A. alternata from citrus as indicator bacteria, through the bacteriostasis test and drug susceptibility test, the types of essential oils with the best inhibitory effect were screened and their concentration was determined. The results showed that the best inhibition effect was mustard essential oil with a minimum inhibitory concentration of 250 μl/L and a minimum bactericidal concentration of 250 μl/L. Followed by the Litsea cubeba essential oil and basil oil, the minimum inhibitory concentration is 500 μl/L.


Molecules ◽  
2019 ◽  
Vol 24 (7) ◽  
pp. 1206 ◽  
Author(s):  
Hazem S. Elshafie ◽  
Daniela Gruľová ◽  
Beáta Baranová ◽  
Lucia Caputo ◽  
Laura De Martino ◽  
...  

Plant essential oils (EOs) are one of the most relevant natural products due to their biological, medicinal, and nutritional properties. The promising biological effects of many plants EOs encourage researchers to study their biochemical properties to be used as possible natural alternatives for commercial pesticides and not only as herbal medicines. The current research has been conducted to study the microbicide effect of Solidago canadensis L. EO to control some common plant diseases caused by several postharvest phytopathogenic fungi (Monilinia fructicola, Botrytis cinerea, Aspergillus niger, and Penicillium expansum) in comparison with Azoxystrobin as a large spectrum fungicide. The antibacterial activity has been carried out against some phytopathogenic bacteria (Bacillus megaterium and Clavibacter michiganensis (G+ve) and Xanthomonas campestris, Pseudomonas fluorescens, and Pseudomonas syringae pv. phaseolicola (G-ve)) compared to the synthetic antibiotic Tetracycline. Minimum inhibitory concentration was carried out to determine the lowest effective EO dose using a 96-well microplate. The cell membrane permeability was also evaluated by measuring the electric conductivity (EC) to examine the possible mechanisms of action of S. canadensis EO. Chemical characterization of EO has been carried out using gas chromatography and mass spectrometry (GC-MS). Thirty-two identified components in S. canadensis EO presented 97.7% of total compounds in EO. The principal compounds were identified as germacrene D (34.9%), limonene (12.5%), α-pinene (11.6%), β-elemene (7.1%), and bornyl acetate (6.3%). In addition, S. canadensis EO demonstrated promising in vitro antimicrobial activities against the majority of tested phytopathogens at all tested concentrations.


INDIAN DRUGS ◽  
2021 ◽  
Vol 57 (12) ◽  
pp. 61-64
Author(s):  
C. Rath Chandi ◽  
A. Samal

Antifungal activity of seven essential oils was studied primarily against C. albicans and E. floccosum. Four essential oils viz. turmeric, palmarosa, lemongrass and citronella, that revealed better antifungal activities during screening, were characterized further. Minimum Inhibitory concentration (MIC) and phenol coefficient values of the oils ranged between 0.97 to 62.5 µl/ml and 0125 to 0.75 respectively. The oils retained the antifungal activities when treated at high temperature (1000 C for 1h) and pressure (autoclaved), indicating presence of thermostable and barostable active components in them. The oils also resisted sonication (33,000Hz for 30min) and revealed antifungal activities against the two pathogens. Immediate killing of E. floccosum, is attributable to an irreversible damage to the cells. Antifungal activity of these oils as recorded during the study, could be attributable to the membrane inhibition mechanism and was observed to be fungicidal in nature.


2019 ◽  
Vol 79 (3) ◽  
pp. 432-437 ◽  
Author(s):  
J. N. Vieira ◽  
C. L. Gonçalves ◽  
J. P. V. Villarreal ◽  
V. M. Gonçalves ◽  
R. G. Lund ◽  
...  

Abstract The aims of this research were: evaluate the chemical composition and the cytotoxicity of the Cuminum cyminum (cumin), Anethum graveolens (dill), Pimpinella anisum (anise) and Foeniculum vulgare (fennel) essential oils, as well as their antifungal activity in vitro against ten Candida spp. isolates. The chemical composition of the oils was analyzed by means of gas chromatography coupled with mass spectrometry (GC/MS). The cytotoxicity assays were performed, using the cell proliferation reagent WST-1 in L929 mouse fibroblasts (20x103 well-1). The determinate the Minimum Inhibitory Concentration (MIC), was performed through the Broth Microdilution technique (CLSI). The chemical main components were the cuminaldehyde (32.66%) for cumin, carvone (34.89%) for the dill, trans-anethole (94.01%) for the anise and anethole (79.62%) for the fennel. Anise and fennel did not were cytotoxic in all the tested concentrations, however the cumin oil was cytotoxic in the concentration of 20 mg.mL-1 and the dill in the concentrations of 20 and 8 mg.mL-1. All yeasts were susceptible against the evaluated essential oils. Cumin presented the lowest MIC against yeasts. We concluded that all the essential oils presented inhibitory action against Candida spp., and C . cyminum, P. anisum and F. vulgare were not cytotoxic in the same minimum inhibitory concentrations for the fungi.


2014 ◽  
Vol 2014 ◽  
pp. 1-9 ◽  
Author(s):  
Negero Gemeda ◽  
Yimtubezinash Woldeamanuel ◽  
Daniel Asrat ◽  
Asfaw Debella

This study was performed to investigate effect of essential oils onAspergillusspore germination, growth, and mycotoxin production.In vitroantifungal and antiaflatoxigenic activities ofCymbopogon martinii, Foeniculum vulgare,andTrachyspermum ammiessential oils were carried out on toxigenic strains ofAspergillusspecies. Plant materials were hydrodistilled for 4-5 h in Clevenger apparatus. 0.25 μL/mL, 0.5 μL/mL, 1 μL/mL, 2 μL/mL, and 4 μL/mL concentrations of each essential oil were prepared in 0.1% Tween 80 (V/V).T. ammioil showed highest antifungal activity. Absolute mycelial inhibition was recorded at 1 μL/mL by essential oils ofT. ammi. The oil also showed complete inhibition of spore germination at a concentration of 2 μL/mL. In addition,T. ammioil showed significant antiaflatoxigenic potency by totally inhibiting toxin production fromA. nigerandA. flavusat 0.5 and 0.75 μL/mL, respectively.C. martinii, F. vulgare,andT. ammioils as antifungals were found superior over synthetic preservative. Moreover, a concentration of 5336.297 μL/kg body weight was recorded for LC50 on mice indicating the low mammalian toxicity. In conclusion, the essential oils fromT. ammican be a potential source of safe natural food preservative for food commodities contamination byAspergillusspecies.


Horticulturae ◽  
2021 ◽  
Vol 7 (11) ◽  
pp. 479
Author(s):  
Panayiota Xylia ◽  
Antonios Chrysargyris ◽  
Zienab F. R. Ahmed ◽  
Nikolaos Tzortzakis

Nowadays, increase fruit losses are being reported due to the development of fungal postharvest diseases. In an attempt to reduce the use of synthetic fungicides, a turn towards natural products such as essential oils (EOs) and natural compounds has been made. The objective of this study was to investigate the effects of eucalyptus (Euc), rosemary (Ros) EO, their mixture (50:50 v/v) and their common main component (i.e., eucalyptol) on the quality parameters, fruit response and inhibition of blue rot (Penicillium expansum) in apple and pear fruits during their shelf life. The results of the present study revealed that fungal colony growth decreased in vitro with exposure at eucalyptus EO (Euc-300 μL/L), rosemary EO (Ros-300 μL/L) and their mixture (Euc + Ros 100 and 300 μL/L). The exposure at Ros-100 μL/L stimulated spore production, whilst Euc + Ros (100 and 300 μL/L) and eucalyptol (100 and 300 μL/L) decreased spore germination. Moreover, the in vivo applied treatments resulted in decreased lesion growth of P. expansum in apple and pear fruits. Respiration rate increased with the application of Euc + Ros at 300 μL/L and eucalyptus EO (Euc-100 μL/L and Euc-300 μL/L) for both assessed fruits. On the other hand, no significant differences were reported on apples and pears total soluble solids and acidity values. The application of Euc + Ros-300 μL/L in apples increased hydrogen peroxide (H2O2) levels, whilst Euc-100 and Euc-300 μL/L increased lipid peroxidation levels. Regarding pear fruits, exposure to Euc-100 μL/L and Ros-100 μL/L resulted in increased H2O2 whereas, Euc-100 μL/L, Ros- (100 and 300 μL/L) and eucalyptol (100 and 300 μL/L) also increased lipid peroxidation. The findings of this study indicate that the investigated natural products can be explored for the preservation of fresh apples and pears, as alternative natural fungicides with consideration of the fresh produce quality attributes.


Sign in / Sign up

Export Citation Format

Share Document