scholarly journals Identification of The Fipronil Resistance Associated Mutations in Nilaparvata lugens GABA Receptors by Molecular Modeling

Molecules ◽  
2019 ◽  
Vol 24 (22) ◽  
pp. 4116 ◽  
Author(s):  
Yafeng Tian ◽  
Ya Gao ◽  
Yanming Chen ◽  
Genyan Liu ◽  
Xiulian Ju

Fipronil, as the first commercialized member of phenylpyrazole insecticides, has been widely used to control planthoppers in China due to its high insecticidal activity and low toxicity to mammals. However, insects have developed resistance to phenylpyrazoles after their long-term use. The resistance mechanism of insects to fipronil has not been well identified, which limited the development of phenylpyrazole insecticides. In the present study, we aimed to elucidate the related fipronil-resistance mechanism in N. lugens GABA receptors by homology modeling, molecular docking, and molecular dynamics. The results indicated that fipronil showed the weakest interaction with the mutant (R0′Q + A2′S) GABA receptors, which is consistent with the experimental study. The binding poses of fipronil were found to be changed when mutations were conducted. These findings verified the novel fipronil-resistance mechanism in silico and provide important information for the design of novel GABAR-targeting insecticides.

Molecules ◽  
2022 ◽  
Vol 27 (2) ◽  
pp. 387
Author(s):  
Xiangcong Wang ◽  
Moxuan Zhang ◽  
Ranran Zhu ◽  
Zhongshan Wu ◽  
Fanhong Wu ◽  
...  

PI3Kα is one of the potential targets for novel anticancer drugs. In this study, a series of 2-difluoromethylbenzimidazole derivatives were studied based on the combination of molecular modeling techniques 3D-QSAR, molecular docking, and molecular dynamics. The results showed that the best comparative molecular field analysis (CoMFA) model had q2 = 0.797 and r2 = 0.996 and the best comparative molecular similarity indices analysis (CoMSIA) model had q2 = 0.567 and r2 = 0.960. It was indicated that these 3D-QSAR models have good verification and excellent prediction capabilities. The binding mode of the compound 29 and 4YKN was explored using molecular docking and a molecular dynamics simulation. Ultimately, five new PI3Kα inhibitors were designed and screened by these models. Then, two of them (86, 87) were selected to be synthesized and biologically evaluated, with a satisfying result (22.8 nM for 86 and 33.6 nM for 87).


2021 ◽  
Vol 11 (4) ◽  
pp. 7336-7342
Author(s):  
K. Zaher ◽  
N. E. Masango ◽  
W. Sobhi ◽  
K. E. Kanouni ◽  
A. Semmeq ◽  
...  

In the present study, we will verify the action of hydroxychloroquine-based derivatives on ACE2 which is considered to be the main portal of entry of the SARS-CoV-2 virus and constitutes an exciting target given its relative genetic stability compared to viral proteins. Thus, 81 molecules derived from hydroxychloroquine by substitutions at 4 different positions were generated in-silico and then studied for their affinity for ACE2 by molecular docking. Only 4 molecules were retained because of their affinity and bioavailability demonstrated by molecular dynamics and molecular docking calculations using COSMOtherm and Materials Studio software.


2020 ◽  
Vol 16 (7) ◽  
pp. 903-927 ◽  
Author(s):  
Rahman Abdizadeh ◽  
Farzin Hadizadeh ◽  
Tooba Abdizadeh

Background: Acetylcholinesterase (AChE), a serine hydrolase, is an important drug target in the treatment of Alzheimer's disease (AD). Thus, novel AChE inhibitors were designed and developed as potential drug candidates, for significant therapy of AD. Objective: In this work, molecular modeling studies, including CoMFA, CoMFA-RF, CoMSIA, HQSAR and molecular docking and molecular dynamics simulations were performed on a series of AChE inhibitors to get more potent anti-Alzheimer drugs. Methods: 2D/3D-QSAR models including CoMFA, CoMFA-RF, CoMSIA, and HQSAR methods were carried out on 40 pyrimidinylthiourea derivatives as data set by the Sybylx1.2 program. Molecular docking and molecular dynamics simulations were performed using the MOE software and the Sybyl program, respectively. Partial least squares (PLS) model as descriptors was used for QSAR model generation. Results: The CoMFA (q2, 0.629; r2ncv, 0.901; r2pred, 0.773), CoMFA-RF (q2, 0.775; r2ncv, 0.910; r2pred, 0.824), CoMSIA (q2, 0.754; r2ncv, 0.919; r2pred, 0.874) and HQSAR models (q2, 0.823; r2ncv, 0.976; r2pred, 0.854) for training and test set yielded significant statistical results. Conclusion: These QSAR models were excellent, robust and had good predictive capability. Contour maps obtained from the QSAR models were validated by molecular dynamics simulationassisted molecular docking study. The resulted QSAR models could be useful for the rational design of novel potent AChE inhibitors in Alzheimer's treatment.


2019 ◽  
Vol 16 (2) ◽  
pp. 373-380 ◽  
Author(s):  
Tatiane P. Rodrigues ◽  
Jorddy N. Cruz ◽  
Tiago S. Arouche ◽  
Tais S. S. Pereira ◽  
Wanessa A. Costa ◽  
...  

Recent studies have reported that phthalates are capable of causing mutations and other changes in the genetic material. This study aimed to investigate the molecular interactions between phthalate di(2-ethylhexyl) phthalate (DEHP) and its metabolites monobutyl phthalate (MBP) and monoethyl phthalate (MEP), interacting with DNA. The research was conducted using molecular modeling techniques such as molecular docking and molecular dynamics simulations. Molecular docking revealed that the DEHP, MBP, and MEP are able to establish hydrogen interactions with various nucleotide bases. Molecular dynamics simulations revealed that these molecules interacted with the DNA, and the binding free energy results demonstrated that the DNA-ligand interaction has favorable free energy. The values for free binding energy were as follows: DNA–DEHP, –21.66 kcal/mol; DNA–MBP, –17.29 kcal/mol; and DNA–MEP, –20.13 kcal/mol. For these three systems, the contributions of van der Waals, electrostatic, and nonpolar solvation energy were favorable for the interaction. The van der Waals interactions contributed the major energy to the intercalation of the binders.


2011 ◽  
Vol 39 (06) ◽  
pp. 1093-1102 ◽  
Author(s):  
Meiwan Chen ◽  
Shengpeng Wang ◽  
Miao Tan ◽  
Yitao Wang

Zedoary turmeric oil and its main active ingredient β-elemene are novel plant-derived anticancer agents with long-term clinical application history and low toxicity, which have been approved by the Chinese SFDA to treat different tumors including cancers of the brain, ovary, prostate, breast, lungs, liver, colon, and other tissues. Unfortunately, their hydrophobic properties, poor stabilities and low bioavailabilities seriously hamper their applications in clinic. Therefore, more attention should be paid to develop novel drug delivery systems for zedoary turmeric oil and β-elemene to enhance their overall quality. Recently, increased research has been carried out on a nanoparticle drug delivery system of zedoary turmeric oil and β-elemene to solve their poor aqueous solubilities and low bioavailabilities in vivo with much remarkable achievements springing up in the last decade. This review presents the novel nanoparticle formulations of zedoary turmeric oil and β-elemene and introduces the possible future prospects of their further study.


Sign in / Sign up

Export Citation Format

Share Document