scholarly journals Estimation of the Chelating Ability of an Extract from Aronia melanocarpa L. Berries and Its Main Polyphenolic Ingredients Towards Ions of Zinc and Copper

Molecules ◽  
2020 ◽  
Vol 25 (7) ◽  
pp. 1507 ◽  
Author(s):  
Sylwia Borowska ◽  
Michał Tomczyk ◽  
Jakub W. Strawa ◽  
Małgorzata M. Brzóska

Previously, we have revealed that prolonged administration of a polyphenol-rich 0.1% extract from the berries of Aronia melanocarpa L. (chokeberries) alone and under chronic exposure to cadmium influences the body status of zinc (Zn) and copper (Cu). The aim of this study was to evaluate, in an in vitro model, the chelating properties of the extract (0.05% and 0.1%) and its main polyphenolic ingredients (cyanidin 3-O-β-galactoside, chlorogenic acid, neochlorogenic acid, (+)-catechin, (−)-epicatechin, quercetin, and kaempferol) regarding divalent ions of Zn (Zn2+) and Cu (Cu2+) at pH reflecting physiological conditions at the gastrointestinal tract such as 2 (empty stomach), 5.5 (full stomach), and 8 (duodenum). The study has revealed that the extract from Aronia berries, as well as cyanidin 3-O-β-galactoside and quercetin, can bind Zn2+ and Cu2+, but only at pH 5.5. Moreover, kaempferol was able to chelate Zn2+ at pH 5.5; however, this ability was weaker than those of cyanidin 3-O-β-galactoside and quercetin. The ability of the chokeberry extract to chelate Zn2+ and Cu2+ may be explained, at least partially, by the presence of polyphenols such as anthocyanin derivatives of cyanidin and quercetin. The findings seem to suggest that Aronia products, used as supplements of a diet, should be consumed before meals, and particular attention should be paid to adequate intake of Zn and Cu under prolonged consumption of these products to avoid deficiency of both bioelements in the body due to their complexation by chokeberry ingredients in the lumen of the gastrointestinal tract.

2020 ◽  
Vol 11 (7) ◽  
pp. 6297-6307 ◽  
Author(s):  
Timme van der Lugt ◽  
Koen Venema ◽  
Stefan van Leeuwen ◽  
Misha F. Vrolijk ◽  
Antoon Opperhuizen ◽  
...  

In a sophisticated gastrointestinal model, dietary advanced glycation endproducts (dAGEs) in food products remain bound to proteins after digestion and concentrations increase.


2014 ◽  
Vol 7 (3) ◽  
pp. 305-312 ◽  
Author(s):  
M. De Boevre ◽  
A. Vanheule ◽  
K. Audenaert ◽  
B. Bekaert ◽  
J. Diana Di Mavungu ◽  
...  

The manuscript details the development of an in vitro model plant system using detached leaves because there is a need for biosynthetic methods for the production and isolation of masked mycotoxins. This detached leaf in vitro model was firstly applied to deoxynivalenol with satisfying results. The biosynthesis of deoxynivalenol-3-glucoside was confirmed using its respective commercially available reference standard. Secondly, the detached leaf in vitro model was applied to T-2 toxin. Mono- and tri-glucoside derivatives of T-2 toxin and HT-2 toxin, T-2-(3)-glucoside, T-2-(3)-triglucoside and HT-2-(3)-glucoside were identified and characterised using Orbitrap high-resolution mass spectrometry. This is the first report on a triglucoside of T-2 toxin. The discovery of new masked forms implies the importance of the development of analytical methods for their detection, the constitution of toxicity studies, and proving the relevance of their presence in the food and feed chain.


PLoS ONE ◽  
2015 ◽  
Vol 10 (3) ◽  
pp. e0120485 ◽  
Author(s):  
Hans Vergauwen ◽  
Bart Tambuyzer ◽  
Karen Jennes ◽  
Jeroen Degroote ◽  
Wei Wang ◽  
...  

2012 ◽  
Vol 3 (3) ◽  
pp. 229-236 ◽  
Author(s):  
M. Hatanaka ◽  
Y. Nakamura ◽  
A.J.H. Maathuis ◽  
K. Venema ◽  
I. Murota ◽  
...  

Survival and germination rate of Bacillus subtilis C-3102 spores were investigated in a stomach and small intestine model (TIM-1), while the impact of C-3102 cells that had passed through TIM-1 on human colon microbiota was evaluated in a model of the large intestine (TIM-2). The survival of C-3102 spores in TIM-1 was 99%; 8% of the spores had germinated. Effluent of TIM-1 was subsequently introduced into TIM-2 and a micro-array platform was employed to assess changes in the microbiota composition. The effluent, which contained germinated C-3102 cells, increased some Bifidobacterium species and decreased some Clostridium groups. These changes were greater compared to those obtained by adding C-3102 spores directly to TIM-2. The present study suggests that oral doses of B. subtilis C-3102 spores have the potential to modulate the human colon microbiota. This effect may be caused by germination of the spores in the gastrointestinal tract.


1983 ◽  
Vol 96 (5) ◽  
pp. 1241-1247 ◽  
Author(s):  
L C Milks ◽  
M J Brontoli ◽  
E B Cramer

Although polymorphonuclear leukocytes (PMN's) can migrate through every epithelium in the body regardless of its permeability, very little is known about the effect of epithelial permeability on PMN migration and the effect of emigrating PMN's on the permeability of the epithelium. In an in vitro model system of transepithelial migration, human PMN's were stimulated by 0.1 micrometer fMet-Leu-Phe to traverse confluent, polarized canine kidney epithelial monolayers of varying permeabilities. Epithelial permeability was determined by both conductance measurement and horseradish peroxidase (HRP) tracer studies. As epithelial permeability increased, the number of PMN invasion sites as well as the number of PMN's that traversed the monolayer increased. The effect of PMN migration on epithelial permeability was examined using the ultrastructural tracers HRP and lanthanum nitrate. PMN's traversing the monolayer made close cell-to-cell contacts with other invading PMNs and with adjacent epithelial cells. These close contacts appeared to prevent leakage of tracer across invasion sites. Following PMN emigration, epithelial junctional membranes reapproximated and were impermeable to the tracers. These results indicated that, in the absence of serum and connective tissue factors, (a) the number of PMN invasion sites and the number of PMN's that traversed an epithelium were a function of the conductance of the epithelium and (b) PMN's in the process of transepithelial migration maintained close cell-cell contacts and prevented the leakage of particles (greater than 5 nm in diameter) across the invasion site.


1987 ◽  
Vol 110 ◽  
Author(s):  
Raymond Connolly ◽  
Norman Shoenfeld ◽  
Karen Ramberg ◽  
Allan D. Callow

AbstractAn in vitro model for measuring platelet reactivity to a variety of biomaterial candidates for vascular grafts is described. A model consisting of a standard area of test material exposed to freshly labeled In platelets in plasma was evaluated. The platelets were isolated from ACD anticoagulated blood and resuspended in ACD plasma. It has been previously demonstrated that platelets so treated circulate in the body and will deposit on biomaterials exposed to the blood in vivo. The in vitro test consisted of an incubation of the platelets and materials at 37°C for one hour. At the end of the incubation, the platelet rich plasma was removed and the materials washed and removed for gamma counting. Platelet reactivity was normalized as a percentage of the counts on the material to counts in an aliquot of the platelet-plasma incubation media. The maximum uptake of platelets occurred within one hour. Platelets from three species, human, baboon, and dog were tested. Platelet uptake by Dacron and PTFE were in the range of 30–40% and 1–5% respectively. This is in accord with the known reactivity of these two vascular graft materials in vivo.A second series of studies were conducted with physically and pharmacologically inactivated platelets and inert particles. Those studies suggest that the initial results do not represent a biologic event but may reflect the porosity of the materials. This emphasizes the necessity of adequately defining an in vitro model against known in vivo activity.


2019 ◽  
Vol 7 (13) ◽  
pp. 2079-2083
Author(s):  
Liudmila Ivanovna Babaskina ◽  
Tatiana Mikhailovna Litvinova ◽  
Dmitrii Vladimirovich Babaskin ◽  
Olga Valerevna Krylova

BACKGROUND: The scientific substantiation for the selection of therapeutically significant dosage of phytocomplex in the dosage form for phonophoresis, control over the delivery of active substances into the body, and what affects this process require the study of the kinetics of phytocomplex flavonoids delivery during phonophoresis. AIM: The aim was to study the possibilities of controlling the process of transdermal delivery of phytocomplex active substances (flavonoids) during phonophoresis in vitro model experiments. METHODS: Working compositions with different concentrations of phytocomplex for phonophoresis were used. The content of flavonoids in the compositions was determined using the spectrophotometric method and was calculated equivalent to quercetin, the flavonoid prevailing in the phytocomplex. The study of the kinetics of flavonoids delivery from working compositions was carried out using Franz diffusion cells and Carbosyl-P membranes. The authors determined the main parameters of the process and established the dependence of the delivery rate of flavonoids on their initial concentration in the working composition. The authors studied the effect of dimethyl sulfoxide and the base-forming substances of the working composition on the kinetics of phytocomplex flavonoid delivery during phonophoresis. RESULTS: The authors recorded an increase in the rate of delivery of the active substances from working compositions containing dimethyl sulfoxide into the model medium by almost 1.5-2 times during the first ten minutes of the experiment (approximate duration of the phonophoresis procedure). The authors proposed technological techniques for improvement of the phonophoresis method for the phytocomplex. The possibilities of control over the process of transdermal delivery of the phytocomplex active ingredients during phonophoresis in vitro model experiments were shown. CONCLUSION: The obtained results provide information for further pharmacological studies of the nature and mechanism of the effect of phytocomplex flavonoids during phonophoresis in the rehabilitation of patients with osteoarthrosis.


Sign in / Sign up

Export Citation Format

Share Document