scholarly journals Rational Design, Synthesis, Characterization and Evaluation of Iodinated 4,4′-Bipyridines as New Transthyretin Fibrillogenesis Inhibitors

Molecules ◽  
2020 ◽  
Vol 25 (9) ◽  
pp. 2213 ◽  
Author(s):  
Alessandro Dessì ◽  
Paola Peluso ◽  
Roberto Dallocchio ◽  
Robin Weiss ◽  
Giuseppina Andreotti ◽  
...  

The 3,3′,5,5′-tetrachloro-2-iodo-4,4′-bipyridine structure is proposed as a novel chemical scaffold for the design of new transthyretin (TTR) fibrillogenesis inhibitors. In the frame of a proof-of-principle exploration, four chiral 3,3′,5,5′-tetrachloro-2-iodo-2′-substituted-4,4′- bipyridines were rationally designed and prepared from a simple trihalopyridine in three steps, including a Cu-catalysed Finkelstein reaction to introduce iodine atoms on the heteroaromatic scaffold, and a Pd-catalysed coupling reaction to install the 2′-substituent. The corresponding racemates, along with other five chiral 4,4′-bipyridines containing halogens as substituents, were enantioseparated by high-performance liquid chromatography in order to obtain pure enantiomer pairs. All stereoisomers were tested against the amyloid fibril formation (FF) of wild type (WT)-TTR and two mutant variants, V30M and Y78F, in acid mediated aggregation experiments. Among the 4,4′-bipyridine derivatives, interesting inhibition activity was obtained for both enantiomers of the 3,3′,5,5′-tetrachloro-2′-(4-hydroxyphenyl)-2-iodo-4,4′-bipyridine. In silico docking studies were carried out in order to explore possible binding modes of the 4,4′-bipyridine derivatives into the TTR. The gained results point out the importance of the right combination of H-bond sites and the presence of iodine as halogen-bond donor. Both experimental and theoretical evidences pave the way for the utilization of the iodinated 4,4′-bipyridine core as template to design new promising inhibitors of TTR amyloidogenesis.

Author(s):  
Suman Rohilla ◽  
Ranju Bansal ◽  
Puneet Chauhan ◽  
Sonja Kachler ◽  
Karl-Norbert Klotz

Background: Adenosine receptors (AR) have emerged as competent and innovative nondopaminergic targets for the development of potential drug candidates and thus constitute an effective and safer treatment approach for Parkinson’s disease (PD). Xanthine derivatives are considered as potential candidates for the treatment Parkinson’s disease due to their potent A2A AR antagonistic properties. Objective: The objectives of the work are to study the impact of substituting N7-position of 8-m/pchloropropoxyphenylxanthine structure on in vitro binding affinity of compounds with various AR subtypes, in vivo antiparkinsonian activity and binding modes of newly synthesized xanthines with A2A AR in molecular docking studies. Methods: Several new 7-substituted 8-m/p-chloropropoxyphenylxanthine analogues have been prepared. Adenosine receptor binding assays were performed to study the binding interactions with various subtypes and perphenazine induced rat catatonia model was used for antiparkinsonian activity. Molecular docking studies were performed using Schrödinger molecular modeling interface. Results: 8-para-substituted xanthine 9b bearing an N7-propyl substituent displayed the highest affinity towards A2A AR (Ki = 0.75 µM) with moderate selectivity versus other AR subtypes. 7-Propargyl analogue 9d produced significantly longlasting antiparkinsonian effects and also produced potent and selective binding affinity towards A2A AR. In silico docking studies further highlighted the crucial structural components required to develop xanthine derived potential A2A AR ligands as antiparkinsonian agents. Conclusion: A new series of 7-substituted 8-m/p-chloropropoxyphenylxanthines having good affinity for A2A AR and potent antiparkinsonian activity has been developed.


2020 ◽  
Vol 17 (7) ◽  
pp. 840-849
Author(s):  
Mahendra Gowdru Srinivas ◽  
Prabitha Prabhakaran ◽  
Subhankar Probhat Mandal ◽  
Yuvaraj Sivamani ◽  
Pranesh Guddur ◽  
...  

Background: Thiazolidinediones and its bioisostere, namely, rhodanines have become ubiquitous class of heterocyclic compounds in drug design and discovery. In the present study, as part of molecular design, a series of novel glitazones that are feasible to synthesize in our laboratory were subjected to docking studies against PPAR-γ receptor for their selection. Methods and Results: As part of the synthesis of selected twelve glitazones, the core moiety, pyridine incorporated rhodanine was synthesized via dithiocarbamate. Later, a series of glitazones were prepared via Knovenageal condensation. In silico docking studies were performed against PPARγ protein (2PRG). The titled compounds were investigated for their cytotoxic activity against 3T3-L1 cells to identify the cytotoxicity window of the glitazones. Further, within the cytotoxicity window, glitazones were screened for glucose uptake activity against L6 cells to assess their possible antidiabetic activity. Conclusion: Based on the glucose uptake results, structure activity relationships are drawn for the title compounds.


2019 ◽  
Vol 49 (17) ◽  
pp. 2219-2234
Author(s):  
Srinu Bodige ◽  
Parameshwar Ravula ◽  
Kali Charan Gulipalli ◽  
Srinivas Endoori ◽  
Purna Koteswara Rao Cherukumalli ◽  
...  

2020 ◽  
Vol 8 (13) ◽  
pp. 4572-4579 ◽  
Author(s):  
Ji Hye Lee ◽  
Cheol Hun Jeong ◽  
Mallesham Godumala ◽  
Chae Yeong Kim ◽  
Hyung Jong Kim ◽  
...  

A new photocrosslinkable PX2Cz was successfully synthesized and used as an excellent hole transport material in green TADF-OLED.


2020 ◽  
Vol 20 (9) ◽  
pp. 788-800 ◽  
Author(s):  
Sobhi M. Gomha ◽  
Zeinab A. Muhammad ◽  
Elham Ezz El-Arab ◽  
Amira M. Elmetwally ◽  
Abdelaziz A. El-Sayed ◽  
...  

Objective: The reaction of bis(4-amino-4H-1,2,4-triazole-3-thiol) with hydrazonoyl halides and α-halo-ketones gave a new series of bis-1,2,4-triazolo[3,4-b]thiadiazine derivatives. Methods: The structure of the new products was established on the basis of their elemental and spectral data (mass, 1H NMR, 13C NMR and IR) and an alternate method. Results: Several of the synthesized products were subjected to in vitro anticancer screening against human hepatocellular carcinoma (HepG-2) and the results showed that compounds 16, 14 and 12 have promising activities (IC50 value of 24.8±9.1, 28.3±0.5, and 31±2.9μM, respectively) compared with Harmine reference drug (IC50 value of 22.4±1.11 μM). Conclusion: Moreover, molecular docking studies were performed to analyze the binding modes of the discovered hits into the active site of DYRK1A using iGEMDOCK.


2017 ◽  
Vol 72 ◽  
pp. 234-247 ◽  
Author(s):  
Saleh Ihmaid ◽  
Hany E.A. Ahmed ◽  
Adeeb Al-Sheikh Ali ◽  
Yousery E. Sherif ◽  
Hamadeh M. Tarazi ◽  
...  

2021 ◽  
Vol 11 (4) ◽  
pp. 469-496
Author(s):  
Nisheeth C. Desai ◽  
Kashyap R. Wadekar ◽  
Unnat P. Pandit ◽  
Harsh K. Mehta ◽  
Dharmpalsinh J. Jadeja ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document