scholarly journals Cultivation of Mushrooms and Their Lignocellulolytic Enzyme Production Through the Utilization of Agro-Industrial Waste

Molecules ◽  
2020 ◽  
Vol 25 (12) ◽  
pp. 2811 ◽  
Author(s):  
Jaturong Kumla ◽  
Nakarin Suwannarach ◽  
Kanaporn Sujarit ◽  
Watsana Penkhrue ◽  
Pattana Kakumyan ◽  
...  

A large amount of agro-industrial waste is produced worldwide in various agricultural sectors and by different food industries. The disposal and burning of this waste have created major global environmental problems. Agro-industrial waste mainly consists of cellulose, hemicellulose and lignin, all of which are collectively defined as lignocellulosic materials. This waste can serve as a suitable substrate in the solid-state fermentation process involving mushrooms. Mushrooms degrade lignocellulosic substrates through lignocellulosic enzyme production and utilize the degraded products to produce their fruiting bodies. Therefore, mushroom cultivation can be considered a prominent biotechnological process for the reduction and valorization of agro-industrial waste. Such waste is generated as a result of the eco-friendly conversion of low-value by-products into new resources that can be used to produce value-added products. Here, we have produced a brief review of the current findings through an overview of recently published literature. This overview has focused on the use of agro-industrial waste as a growth substrate for mushroom cultivation and lignocellulolytic enzyme production.

Molecules ◽  
2018 ◽  
Vol 23 (10) ◽  
pp. 2560 ◽  
Author(s):  
Pardeep Sadh ◽  
Suresh Kumar ◽  
Prince Chawla ◽  
Joginder Duhan

A large number of by-products or wastes are produced worldwide through various food industries. These wastes cause a serious disposable problem with the environment. So, now a day’s different approaches are used for alternative use of these wastes because these by-products are an excellent source of various bioactive components such as polyphenols, flavonoids, caffeine, carotenoids, creatine, and polysaccharides etc. which are beneficial for human health. Furthermore, the composition of these wastes depends on the source or type of waste. Approximately half of the waste is lignocellulosic in nature produced from food processing industries. The dissimilar types of waste produced by food industries can be fortified by various processes. Fermentation is one of the oldest approaches and there are three types of fermentation processes that are carried out such as solid state, submerged and liquid fermentation used for product transformation into value added products through microorganisms. Selections of the fermentation process are product specific. Moreover, various studies were performed to obtain or fortified different bioactive compounds that are present in food industries by-products or wastes. Therefore, the current review article discussed various sources, composition and nutritive value (especially bioactive compounds) of these wastes and their management or augmentation of value-added products through fermentation.


2019 ◽  
Vol 6 ◽  
Author(s):  
Fereidoon Shahidi ◽  
Vamadevan Varatharajan ◽  
Han Peng ◽  
Ruchira Senadheera

The world fisheries resources have exceeded 160 million tons in recent years. However, every year a considerable amount of total catch is discarded as by-catch or as processing leftovers, and that includes trimmings, fins, frames, heads, skin, viscera and among others. In addition, a large quantity of processing by-products is accumulated as shells of crustaceans and shellfish from marine bioprocessing plants. Recognition of the limited marine resources and the increasing environmental pollution has emphasized the need for better utilization of the by-products. Marine by-products contain valuable protein and lipid fractions, minerals, enzymes as well as many other components. The major fraction of by-products are used for feed production—in making fish meal/oil, but this has low profitability. However, there are many ways in which the fish and shellfish waste could be better utilized, including the production of novel food ingredients, nutraceuticals, pharmaceuticals, biomedical materials, fine chemicals, and other value-added products. In recent times, much research is conducted in order to explore the possible uses of different by-products. This contribution primarily covers the characteristics and utilization of the main ingredients such as protein, lipid, chitin and its derivatives, enzymes, carotenoids, and minerals originating from marine by-products.


2017 ◽  
Vol 19 (13) ◽  
pp. 3164-3164
Author(s):  
S. Ortega-Requena ◽  
S. Rebouillat

Retraction of ‘Bigger data open innovation: potential applications of value-added products from milk and sustainable valorization of by-products from the dairy industry’ by S. Ortega-Requena et al., Green Chem., 2015, 17, 5100–5113.


2019 ◽  
Vol 6 ◽  
Author(s):  
Fereidoon Shahidi ◽  
Vamadevan Varatharajan ◽  
Han Peng ◽  
Ruchira Senadheera

The world fisheries resources have exceeded 160 million tons in recent years. However, every year a considerable amount of total catch is discarded as by-catch or as processing leftovers, and that includes trimmings, fins, frames, heads, skin, viscera and among others. In addition, a large quantity of processing by-products is accumulated as shells of crustaceans and shellfish from marine bioprocessing plants. Recognition of the limited marine resources and the increasing environmental pollution has emphasized the need for better utilization of the by-products. Marine by-products contain valuable protein and lipid fractions, minerals, enzymes as well as many other components. The major fraction of by-products are used for feed production—in making fish meal/oil, but this has low profitability. However, there are many ways in which the fish and shellfish waste could be better utilized, including the production of novel food ingredients, nutraceuticals, pharmaceuticals, biomedical materials, fine chemicals, and other value-added products. In recent times, much research is conducted in order to explore the possible uses of different by-products. This contribution primarily covers the characteristics and utilization of the main ingredients such as protein, lipid, chitin and its derivatives, enzymes, carotenoids, and minerals originating from marine by-products.


2020 ◽  
Author(s):  
S. Mohan ◽  
L. Chithra ◽  
R. Nageswari ◽  
V. Manimozhi Selvi ◽  
M. Mathialagan

Sugarcane is one of the major cash crops, used for the production of sugar and ethanol. Sugarcane processing, results in many by by-products like bagasse, molasses and press mud which have economic value. Also, the by-products serve to generate many value added products. Sugarcane wax is a value added product obtained by the processing of press mud. It has pharmaceutical, agricultural and industrial applications. n-Triacontanol, Policosanol, D-003 acids and waxes are some of the products derived from the sugarcane wax. This article attempt discusses the various methods of extraction of sugarcane wax, its constituents and its characteristics and applications of the products derived from the sugarcane wax.


2019 ◽  
Vol 10 (1) ◽  
pp. 3-19 ◽  
Author(s):  
Somya Singhal ◽  
Prasad Rasane ◽  
Sawinder Kaur ◽  
Umar Garba ◽  
Jyoti Singh ◽  
...  

Background: Edible mushrooms are an abundant source of carbohydrates, proteins, and multiple antioxidants and phytonutrients. This paper presents a general overview on the edible fungus describing the inventions made in the field of its cultivation, equipment and value-added products. </P><P> Objective: To understand and review the innovations and nutraceutical benefits of mushrooms as well as to develop interest regarding the edible mushrooms. </P><P> Methods: Information provided in this review is based on the available research investigations and patents. </P><P> Result: Mushrooms are an edible source of a wide variety of antioxidants and phytonutrients with a number of nutraceutical properties including anti-tumor and anti-carcinogenic. Thus, several investigations are made for cultivation and improvement of the yield of mushrooms through improvisation of growth substrates and equipment used for mushroom processing. The mushroom has been processed into various products to increase its consumption, providing the health and nutritional benefit to mankind. </P><P> Conclusion: This paper summarizes the cultivation practices of mushroom, its processing equipment, methods of preservation, value-added based products, and its nutraceutical properties. The review also highlights the various scientific feats achieved in terms of patents and research publications promoting mushroom as a wholesome food.


2019 ◽  
Vol 3 (Supplement_1) ◽  
Author(s):  
Savita Budhwar

Abstract Objectives The main aim of this study is to determine the physiochemical properties and nutritional composition of by-product of Bengal gram and to develop value added products, incorporating by-products of cereals and pulses in combination. Further in this study popularization of such acceptable product and transfer of the technology regarding their preparation and utilization is also regarded to be beneficial. Methods For the nutritional evaluation of raw ingredients, physio-chemical property and nutrient composition were checked by AOAC methods. Standardization and development of some basic value added products were also done. Functional properties and nutritional composition of developed value added products were equally checked by shelf life evaluation to choose the most acceptable consumable food products. New products were made using fermentation, supplementation and combination. Results We found that most of the by-products are rich in protein, calcium, iron and fiber. We observed that Bengal gram husk contain highest amount of crude fiber i.e., 40%. However, it also contains ash (4.2%), dietary fiber (82 g/100 gm), insoluble dietary fiber (76 g/100 gm) and total calcium (984 mg/100gm). In case of broken rice we have observed low amount of trypsin inhibitor activity (16.35 TIU/mg) and high amount of starch (75 g/100gm). In addition, we have observed anti-nutritional factors significantly in higher amounts in case of broken rice. Additionally, wheat bran was found to contain high amount of total phosphorus (988 mg/100gm), soluble dietary fiber (10 g/100gm) , total calcium ( 71 mg/100 mg) and Trypsin inhibitor activity ( 55 TIU/mg) . Combining these by-products various products were prepared using various processing techniques like fermentation, supplementation and combination. We found that newly prepared value added products have high amount of proteins, dietary fiber, available minerals, in vitro protein digestibility and higher antioxidant activity. Conclusions We suggest that novel formulated food products can be utilized as an unconventional source of nutrients and therapeutic weapon to combat diseases such as diabetes and hypertension. Utilization of such agro wastes as food products will also be useful to combat hunger, food demand and malnourished state leading to maintenance of food security. Funding Sources Science and Engineering Research Board (SERB), Department of Science and Technology, Government of India.


Sign in / Sign up

Export Citation Format

Share Document