scholarly journals Design, Synthesis and Biological Evaluation of Novel Triazole N-acylhydrazone Hybrids for Alzheimer’s Disease

Molecules ◽  
2020 ◽  
Vol 25 (14) ◽  
pp. 3165
Author(s):  
Matheus de Freitas Silva ◽  
Ellen Tardelli Lima ◽  
Letizia Pruccoli ◽  
Newton Castro ◽  
Marcos Guimarães ◽  
...  

Alzheimer’s disease (AD) is a multifactorial neurodegenerative disorder that involves different pathogenic mechanisms. In this regard, the goal of this study was the design and synthesis of new compounds with multifunctional pharmacological activity by molecular hybridization of structural fragments of curcumin and resveratrol connected by an N-acyl-hydrazone function linked to a 1,4-disubstituted triazole system. Among these hybrid compounds, derivative 3e showed the ability to inhibit acetylcholinesterase activity, the intracellular formation of reactive oxygen species as well as the neurotoxicity elicited by Aβ42 oligomers in neuronal SH-SY5Y cells. In parallel, compound 3e showed a good profile of safety and ADME parameters. Taken together, these results suggest that 3e could be considered a lead compound for the further development of AD therapeutics.

2020 ◽  
Vol 18 (4) ◽  
pp. 354-359
Author(s):  
Shirin Tarbiat ◽  
Azize Simay Türütoğlu ◽  
Merve Ekingen

Alzheimer's disease is a neurodegenerative disorder characterized by memory loss and impairment of language. Alzheimer's disease is strongly associated with oxidative stress and impairment in the cholinergic pathway, which results in decreased levels of acetylcholine in certain areas of the brain. Hence, inhibition of acetylcholinesterase activity has been recognized as an acceptable treatment against Alzheimer's disease. Nature provides an array of bioactive compounds, which may protect against free radical damage and inhibit acetylcholinesterase activity. This study compares the in vitro antioxidant and anticholinesterase activities of hydroalcoholic extracts of five cultivars of Rosa Damascena Mill. petals (R. damascena 'Bulgarica', R. damascena 'Faik', R. damascena 'Iranica', R. damascena 'Complex-635' and R. damascena 'Complex-637') from Isparta, Turkey. The antioxidant activities of the hydroalcoholic extracts were tested for ferric ion reduction and DPPH radical scavenging activities. The anti-acetylcholinesterase activity was also evaluated. All rose cultivars showed a high potency for scavenging free radical and inhibiting acetylcholinesterase activity. There was a significant correlation between antioxidant and acetylcholinesterase inhibitory activity. Among cultivars, Complex-635 showed the highest inhibitory effect with an IC50 value of 3.92 µg/mL. Our results suggest that all these extracts may have the potential to treat Alzheimer's disease with Complex-635 showing more promise.


2020 ◽  
Vol 26 ◽  
Author(s):  
Nimra Javaid ◽  
Muhammad Ajmal Shah ◽  
Azhar Rasul ◽  
Zunera Chauhdary ◽  
Uzma Saleem ◽  
...  

: Neurodegeneration is a multifactorial process involved the different cytotoxic pathways that lead towards neuronal cell death. Alzheimer’s disease (AD) is a persistent neurodegenerative disorder that normally has a steady onset yet later on it worsens. The documented evidence of AD neuropathology manifested the neuro-inflammation, increased reactive oxygen, nitrogen species and decreased antioxidant protective process; mitochondrial dysfunction as well as increased level of acetylcholinesterase activity. Moreover, enhanced action of proteins leads towards neural apoptosis which have a vital role in the degeneration of neurons. The inability of commercial therapeutic options to treat AD with targeting single mechanism leads the attraction towards organic drugs. Ellagic acid is a dimer of gallic acid, latest studies expressed that ellagic acid can initiate the numerous cell signaling transmission and decrease the progression of disorders, involved in the degeneration of neurons. The influential property of ellagic acid to protect the neurons in neurodegenerative disorders is due to its antioxidant effect, iron chelating and mitochondrial protective effect. The main goal of this review is to critically analyze the molecular mode of action of ellagic acid against neurodegeneration.


2020 ◽  
Vol 21 (20) ◽  
pp. 7652
Author(s):  
Irene Pachón Angona ◽  
Helene Martin ◽  
Solene Daniel ◽  
Ignacio Moraleda ◽  
Alexandre Bonet ◽  
...  

We report herein the design, synthesis, biological evaluation, and molecular modelling of new inhibitors of acetylcholinesterase (AChE) and butyrylcholinesterase (BuChE), able to block Ca+2 channels also showing antioxidant and neuroprotective activities. The new MTDL, dialkyl 2,6-dimethyl-4-(4-((5-aminoalkyl)oxy)phenyl)-1,4-dihydropyridine-3,5-dicarboxylate 3a-p, have been obtained via Hantzsch reaction from appropriate and commercially available precursors. Pertinent biological analysis has prompted us to identify MTDL 3h [dimethyl-4-(4-((5-(4-benzylpiperidin-1-yl)pentyl)oxy)phenyl)-2,6-dimethyl-1,4-dihydropyridine-3,5-dicarboxylate] as an attractive inhibitor of AChE (1.8 μM) and BuChE (2 μM), Ca+2 channel antagonist (47.72% at 10 μM), and antioxidant (2.54 TE) agent, showing significant neuroprotection 28.68% and 38.29% against H2O2, and O/R, respectively, at 0.3 μM, thus being considered a hit-compound for further investigation in our search for anti-Alzheimer’s disease agents.


Sign in / Sign up

Export Citation Format

Share Document