scholarly journals A Liquid Chromatography-High Resolution Mass Spectrometry (LC-HRMS) Method for the Determination of Free Hydroxy Fatty Acids in Cow and Goat Milk

Molecules ◽  
2020 ◽  
Vol 25 (17) ◽  
pp. 3947 ◽  
Author(s):  
Maroula G. Kokotou ◽  
Christiana Mantzourani ◽  
Asimina Bourboula ◽  
Olga G. Mountanea ◽  
George Kokotos

A liquid chromatography–high resolution mass spectrometry (LC-HRMS) method for the direct determination of various saturated hydroxy fatty acids (HFAs) in milk was developed for the first time. The method involves mild sample preparation conditions, avoids time-consuming derivatization procedures, and permits the simultaneous determination of 19 free HFAs in a single 10-min run. This method was validated and applied in 17 cow milk and 12 goat milk samples. This work revealed the existence of various previously unrecognized hydroxylated positional isomers of palmitic acid and stearic acid in both cow and goat milk, expanding our knowledge on the lipidome of milk. The most abundant free HFAs in cow milk were proven to be 7-hydroxystearic acid (7HSA) and 10-hydroxystearic acid (10HSA) (mean content values of 175.1 ± 3.4 µg/mL and 72.4 ± 6.1 µg/mL in fresh milk, respectively). The contents of 7HSA in cow milk seem to be substantially higher than those in goat milk.

Molecules ◽  
2020 ◽  
Vol 25 (7) ◽  
pp. 1548 ◽  
Author(s):  
Maroula G. Kokotou ◽  
Christiana Mantzourani ◽  
George Kokotos

The determination of free fatty acids (FFAs) in milk is of importance for quality control, legislative purposes, authentication and product development. We present herein a liquid chromatography–high resolution mass spectrometry method for the direct determination of FFAs in milk. The method involves mild sample preparation, avoids time-consuming derivatization and allows the direct quantification of twenty-two FFAs in a 10-min single run. It was validated and applied in thirteen cow milk and seven goat milk samples. Saturated fatty acids C16:0, C18:0 and unsaturated C18:1 (n-9) were found to be the major components of milk FFAs at concentrations of 33.1 ± 8.2 μg/mL, 16.5 ± 5.3 μg/mL and 14.8 ± 3.8 μg/mL, respectively, in cow milk and at concentrations of 22.8 ± 1.8 μg/mL, 12.7 ± 2.8 μg/mL and 13.3 ± 0.3 μg/mL, respectively, in goat milk. Other saturated and unsaturated FFAs were found in significantly lower quantities. Saturated fatty acids C6:0, C8:0 and C10:0 were found in higher quantities in goat milk than in cow milk. The levels of the important (for human health) odd-chain FFAs C15:0 and C17:0 were estimated in cow and goat milk.


Metabolites ◽  
2020 ◽  
Vol 10 (1) ◽  
pp. 40 ◽  
Author(s):  
Maroula G. Kokotou ◽  
Christiana Mantzourani ◽  
Rodalia Babaiti ◽  
George Kokotos

The lipidome of royal jelly (RJ) consists of medium-chained (8–12 carbon atoms) free fatty acids. We present herein a liquid chromatography-high resolution mass spectrometry (HRMS) method that permits the determination of RJ fatty acids and at the same time the detection of suspect fatty acids. The method allows for the direct quantification of seven free fatty acids of RJ, avoiding any derivatization step. It was validated and applied in seven RJ samples, where the major RJ fatty acid trans-10-hydroxy-2-decenoic acid (10-HDA) was found to vary from 0.771 ± 0.08 to 0.928 ± 0.04 g/100 g fresh RJ. Four additional suspect fatty acids were simultaneously detected taking advantage of the HRMS detection.


Metabolites ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 46
Author(s):  
Maroula G. Kokotou ◽  
Charikleia S. Batsika ◽  
Christiana Mantzourani ◽  
George Kokotos

Oxidized saturated fatty acids, containing a hydroxyl or an oxo functionality, have attracted little attention so far. Recent studies have shown that saturated hydroxy fatty acids, which exhibit cancer cell growth inhibition and may suppress β-cell apoptosis, are present in milk. Herein, we present the application of a liquid chromatography-high-resolution mass spectrometry (LC-HRMS) method for the detection and quantification of various saturated oxo fatty acids (SOFAs) previously unrecognized in milk. This robust and rapid analytical method, which involves simple sample preparation and a single 10-min run, revealed the presence of families of oxostearic acids (OSAs) and oxopalmitic acids (OPAs) in milk. 8OSA, 9OSA, 7OSA, 10OSA and 10OPA were found to be the most abundant SOFAs in both cow and goat milk. Higher contents of SOFAs were found in cow milk in comparison to goat milk. Together with SOFAs, ricinoleic acid, which is isobaric to OSA, was detected and quantified in all milk samples, following a “suspect” HRMS analysis approach. This unique natural fatty acid, which is the main component (>90%) of castor oil triglycerides, was estimated at mean content values of 534.3 ± 6.0 μg/mL and 460 ± 8.1 μg/mL in cow and goat milk samples, respectively.


Sign in / Sign up

Export Citation Format

Share Document