scholarly journals DFT Investigation of Hydrogen Atom Abstraction from NHC-Boranes by Methyl, Ethyl and Cyanomethyl Radicals—Composition and Correlation Analysis of Kinetic Barriers

Molecules ◽  
2020 ◽  
Vol 25 (19) ◽  
pp. 4509
Author(s):  
Hong-jie Qu ◽  
Lang Yuan ◽  
Cai-xin Jia ◽  
Hai-tao Yu ◽  
Hui Xu

Understanding the hydrogen atom abstraction (HAA) reactions of N-heterocyclic carbene (NHC)-boranes is essential for extending the practical applications of boron chemistry. In this study, density functional theory (DFT) computations were performed for the HAA reactions of a series of NHC-boranes attacked by •CH2CN, Me• and Et• radicals. Using the computed data, we investigated the correlations of the activation and free energy barriers with their components, including the intrinsic barrier, the thermal contribution of the thermodynamic reaction energy to the kinetic barriers, the activation Gibbs free energy correction and the activation zero-point vibrational energy correction. Furthermore, to describe the dependence of the activation and free energy barriers on the thermodynamic reaction energy or reaction Gibbs free energy, we used a three-variable linear model, which was demonstrated to be more precise than the two-variable Evans–Polanyi linear free energy model and more succinct than the three-variable Marcus-theory-based nonlinear HAA model. The present work provides not only a more thorough understanding of the compositions of the barriers to the HAA reactions of NHC-boranes and the HAA reactivities of the substrates but also fresh insights into the suitability of various models for describing the relationships between the kinetic and thermodynamic physical quantities.

2019 ◽  
Vol 72 (3) ◽  
pp. 174 ◽  
Author(s):  
Qing Wang ◽  
Xinmin Wang ◽  
Shuo Pan

In this study, density functional theory (DFT) at the GGA/RPBE level was employed to examine the effects of the kerogen microstructure on the formation mechanism of methane during the pyrolysis of kerogen. The calculations prove that the evolution of CH4 during kerogen pyrolysis corresponds to demethylation, and the process of forming methane involves the interaction of intramolecular hydrogen atom transfer and assistant hydrogen atom transfer. In all reaction paths, the energy barrier of path 5 is the smallest at 260.56kJmol−1. The energy barrier of path 6 is the largest at 554.36kJmol−1. The results indicate that CO is favourable for demethylation, and CO2 is not conducive to demethylation. Path 1 is the formation of methane by the transfer of assistant hydrogen atoms, and the required energy barrier is 379.45kJmol−1. The side chain structure of the aromatic hydrocarbon structure is liable to demethylation to form methane. A comparison of the reaction energy barriers follows the order: path 1<path 15<path 14<path 10, which indicates the that difference in the demethylation reaction is based on the microstructure. In the same reaction process, the benzene ring and the aliphatic hydrocarbon structure are more susceptible to demethylation to form methane. In the heterocyclic bicyclic structures containing O and S, a comparison of the reaction energy barriers follows the order: path 11 ≈ path 12<path 13, so paths 11 and 12 are close, but path 13 is more difficult to occur, indicating that it is more difficult to demethylate with heteroatoms in the same ring. From a thermodynamic point of view, in the process of assisting the formation of methane by hydrogen atoms, the demethylation reaction is mainly an endothermic reaction. During the transfer of intramolecular hydrogen atoms, the demethylation reaction is mainly an exothermic reaction, and most reactions are spontaneous.


Materials ◽  
2021 ◽  
Vol 14 (6) ◽  
pp. 1404
Author(s):  
Yunfei Yang ◽  
Changhao Wang ◽  
Junhao Sun ◽  
Shilei Li ◽  
Wei Liu ◽  
...  

In this study, the structural, elastic, and thermodynamic properties of DO19 and L12 structured Co3X (X = W, Mo or both W and Mo) and μ structured Co7X6 were investigated using the density functional theory implemented in the pseudo-potential plane wave. The obtained lattice constants were observed to be in good agreement with the available experimental data. With respect to the calculated mechanical properties and Poisson’s ratio, the DO19-Co3X, L12-Co3X, and μ-Co7X6 compounds were noted to be mechanically stable and possessed an optimal ductile behavior; however, L12-Co3X exhibited higher strength and brittleness than DO19-Co3X. Moreover, the quasi-harmonic Debye–Grüneisen approach was confirmed to be valid in describing the temperature-dependent thermodynamic properties of the Co3X and Co7X6 compounds, including heat capacity, vibrational entropy, and Gibbs free energy. Based on the calculated Gibbs free energy of DO19-Co3X and L12-Co7X6, the phase transformation temperatures for DO19-Co3X to L12-Co7X6 were determined and obtained values were noted to match well with the experiment results.


2019 ◽  
Vol 26 (04) ◽  
pp. 1850172
Author(s):  
MUDAR AHMED ABDULSATTAR ◽  
ADEEBH L. RESNE ◽  
SHROK ABDULLAH ◽  
RIYADH J. MOHAMMED ◽  
NOON KADHUM ALARED ◽  
...  

Density functional theory combined with Gibbs free energy calculations is used to study the sensing behavior of tin dioxide (SnO[Formula: see text] clusters towards chlorine gas molecules. Studied SnO2 clusters’ results show the known property of tin dioxide being an oxygen-deficient semiconductor with the preferred stoichiometry SnO[Formula: see text]. The kind of reactions that result in sensing Cl2 molecules is investigated. These include oxygen replacement, chlorine molecule dissociation and van der Waals attachment. Oxygen replacement shows an increase in energy gap which is the case experimentally. Optimum sensing operating temperature towards Cl2 molecules that results from the intersection of the highest SnO2 adsorption and desorption Gibbs free energy lines is at 275∘C in agreement with the experimentally measured temperature of 260∘C.


2020 ◽  
Author(s):  
Debabrata Sengupta ◽  
Christian Sandoval-Pauker ◽  
Emily Schueller ◽  
Angela M. Encerrado-Manriquez ◽  
Alejandro J. Metta-Magaña ◽  
...  

Room temperature photolysis of the bis(azide)cobaltate(II) complex [Na(THF)<sub>x</sub>][(<sup>ket</sup>guan)Co(N3)2] (<sup>ket</sup>guan = [(tBu2CN)C(NDipp)2]–, Dipp = 2,6-diisopropylphenyl) (3a) in THF cleanly forms the binuclear cobalt nitride [Na(THF)4{[(<sup>ket</sup>guan)Co(N3)]2(μ-N)}]<sub>n</sub> (1). Compound 1 represents the first example of an isolable, bimetallic cobalt nitride complex, and it has been fully characterized by spectroscopic, magnetic, and computational analyses. Density functional theory supports a CoIII=N=CoIII canonical form with significant π-bonding between the cobalt centers and the nitride atom. Unlike other Group 9 bridging nitride complexes, no radical character is detected at the bridging N-atom of 1. Indeed, 1 is unreactive towards weak C-H donors and even co-crystallizes with a molecule of cyclohexadiene (CHD) in its crystallographic unit cell to give 1·CHD as a room temperature stable product. Notably, addition of pyridine to 1 or photolyzed solutions of [(<sup>ket</sup>guan)Co(N3)(py)]<sub>2</sub> (4a) leads to destabilization via activation of the nitride unit, resulting in the mixed-valent Co(II)/(III) bridged imido species [(<sup>ket</sup>guan)Co]2(μ-NH)(μ-N3) (5) formed from intermolecular hydrogen atom abstraction (HAA) of strong C-H bonds (BDE ~ 100 kcal/mol). Kinetic rate analysis of the formation of 5 in the presence of C6H12 or C6D12 gives a KIE = 2.5±0.1, supportive of a HAA formation path-way. The reactivity of our system was further probed by photolyzing C6D6/py-d5 solutions of 4a under an H2 atmosphere (150 psi), which leads to the exclusive formation of the bis(imido)[(<sup>ket</sup>guan)Co(μ-NH)]2 (6) as a result of dihydrogen activa-tion. These results provide unique insights into the chemistry and electronic structure of late 3d-metal nitrides while providing entryway into C-H activation pathways.


2019 ◽  
Vol 53 (10) ◽  
pp. 5816-5827 ◽  
Author(s):  
Jimmy Murillo-Gelvez ◽  
Kevin P. Hickey ◽  
Dominic M. Di Toro ◽  
Herbert E. Allen ◽  
Richard F. Carbonaro ◽  
...  

2009 ◽  
Vol 16 (06) ◽  
pp. 905-908 ◽  
Author(s):  
J. X. GUO ◽  
L. GUAN ◽  
B. GENG ◽  
Q. LI ◽  
Q. X. ZHAO ◽  
...  

Diffusion of H atom in the Ti (0001) outer-layer and inter-layer surface is studied using density functional theory based on generalized gradient approximation (GGA). The energy barriers for the hydrogen atom diffusion in different interstitial sites at the same layers or between adjacent layers are calculated. It is found that the energy barriers of H atom diffusion in the adjacent interstitial layers are bigger than that in the same interstitial layers. For the diffusion of H atom between adjacent interstitial layers, the diffusion between tetrahedral sites is easier than that between octahedral sites. While for diffusion of H atom between the same interstitial layers, the diffusion between tetrahedral sites is easier than that between tetrahedral and octahedral sites. Moreover, it is found that the most possible inside diffusion from hcp site of a hydrogen atom in the Ti (0001) outer-layer goes through tetrahedral sites.


2019 ◽  
Vol 44 (2) ◽  
pp. 122-131
Author(s):  
Bangchang Qin ◽  
Yang Tian ◽  
Pengxiang Zhang ◽  
Zuoyin Yang ◽  
Guoxin Zhang ◽  
...  

Density functional theory calculations were employed to investigate the electrochemical oxygen reduction reaction on the (111) and (100) surfaces of cobalt(II) oxide. Different mechanisms were applied to evaluate the oxygen reduction reaction performance of cobalt(II) oxide structures in terms of the Gibbs free energy and density of states. A variety of intermediate structures based on associative and dissociative mechanisms were constructed and optimized. As a result, we estimated the catalytic activity by calculating the free energy of the intermediates and constructing free energy diagrams, which suggested that the oxygen reduction reaction Gibbs free energy on cobalt(II) oxide (111) and (100) surfaces based on the associative mechanism is smaller than that based on the dissociative mechanism, demonstrating that the associative mechanism should be more likely to be the oxygen reduction reaction pathway. Moreover, the theoretical oxygen reduction reaction activity on the cobalt(II) oxide (111) surface was found to be higher than that on the cobalt(II) oxide (100) surface. These results shed light on the rational design of high-performance cobalt(II) oxide oxygen reduction reaction catalysts.


2013 ◽  
Vol 66 (3) ◽  
pp. 323 ◽  
Author(s):  
Heather M. Aitken ◽  
Sonia M. Horvat ◽  
Michelle L. Coote ◽  
Ching Yeh Lin ◽  
Carl H. Schiesser

It is predicted on the basis of ab initio and density functional calculations that intramolecular homolytic substitution of oxyacyl radicals at the sulfur atom in ω-alkylthio-substituted radicals do not involve hypervalent intermediates. With tert-butyl as the leaving radical, free energy barriers ΔG‡ (G3(MP2)-RAD) for these reactions range from 45.8 kJ mol–1 for the formation of the five-membered cyclic thiocarbonate (8) to 56.7 kJ mol–1 for the formation of the six-membered thiocarbonate (9). Rate coefficients in the order of 104–106 s–1 and 101–104 s–1 for the formation of 8 and 9, respectively, at 353.15 K in the gas phase are predicted at the G3(MP2)-RAD level of theory.


Crystals ◽  
2019 ◽  
Vol 9 (5) ◽  
pp. 256 ◽  
Author(s):  
Xuan Hao ◽  
Jinfeng Liu ◽  
Hongyuan Luo ◽  
Yanqiang Han ◽  
Wenxin Hu ◽  
...  

Molecular crystal plays an important role in many fields of science and technology, but it often crystallizes in different polymorphs with different physical properties. To guide the experimental synthesis of candidate materials, the atomic-scale model is frequently used to predict the most stable polymorph and its structural properties. Here, we show how an ab initio method can be used to achieve a rapid and accurate prediction of sulfathiazole crystal polymorphs (an antibiotic drug), based on the Gibbs free energy calculation and Raman spectra analysis. At the atmospheric pressure and the temperature of 300 K, we demonstrate that form III (FIII) is the most stable structure of sulfathiazole. The agreement between the predicted and experimental crystal structures corresponds to the order of stability for five sulfathiazole polymorphs as FI < FV < FIV < FII < FIII, which is achieved by employing the density functional theory (DFT) calculations.


Catalysts ◽  
2020 ◽  
Vol 10 (3) ◽  
pp. 319
Author(s):  
Xiaoyun Liu ◽  
Bing Qiu ◽  
Xinzheng Yang

Inspired by the structures of the active site of lactate racemase and H2 activation mechanism of mono-iron hydrogenase, we proposed a series of sulphur–carbon–sulphur (SCS) nickel complexes and computationally predicted their potentials for catalytic hydrogenation of CO2. Density functional theory calculations reveal a metal–ligand cooperated mechanism with the participation of a sulfur atom in the SCS pincer ligand as a proton receiver for the heterolytic cleavage of H2. For all newly proposed complexes containing functional groups with different electron-donating and withdrawing abilities in the SCS ligand, the predicted free energy barriers for the hydrogenation of CO2 to formic acid are in a range of 22.2–25.5 kcal/mol in water. Such a small difference in energy barriers indicates limited contributions of those functional groups to the charge density of the metal center. We further explored the catalytic mechanism of the simplest model complex for hydrogenation of formic acid to formaldehyde and obtained a total free energy barrier of 34.6 kcal/mol for the hydrogenation of CO2 to methanol.


Sign in / Sign up

Export Citation Format

Share Document