scholarly journals (+)-Erythro-Δ8′-7S,8R-dihydroxy-3,3′,5′-trimethoxy-8-O-4′-neolignan, an Anti-Acne Component in Degreasing Myristica fragrans Houtt

Molecules ◽  
2020 ◽  
Vol 25 (19) ◽  
pp. 4563
Author(s):  
Chia-Jung Lee ◽  
Chun-Wei Huang ◽  
Lih-Geeng Chen ◽  
Ching-Chiung Wang

Acne is a common skin condition observed in adolescents. Nutmeg (Myristica fragrans Houtt) (MF) is a well-known traditional Chinese medicine; its major toxic components, safrole and myristicin, are rich in essential oils. Essential oils of MF (MFO) were extracted by hydrodistillation; the residue was extracted using 50% methanol (MFE-M). The minimum inhibitory concentration (MIC) of MFE-M against Cutibacterium acnes and Staphylococcus aureus was 0.64 mg. Four compounds were obtained from MFE-M: myristicin (1), (+)-erythro-Δ8′-7S,8R- dihydroxy-3,3,5′-trimethoxy-8-O-4′-neolignan (2), (+)-erythro-Δ8’-7-hydroxy-3,4,3’,5’-tetramethoxy 8-O-4-neolignan (3), and erythro-Δ8′-7-acetoxy-3,4,3′,5′-tetramethoxy-8-O-4′-neolignan (4). Compound 2 exerted the strongest antimicrobial activity, with MICs of 6.25 and 3.12 μg/mL against C. acnes and S. aureus, respectively. Moreover, 2 inhibited NO, PGE2, iNOS, and COX-2 levels in RAW 264.7 cells induced by LPS or heat-killed C. acnes; NO production at 50% inhibitory concentrations (IC50) was 11.07 and 11.53 μg/mL, respectively. Myristicin and safrole content was higher in MFO than in MFE-M. MFO and MFE-M caused no skin irritation after a single topical application in Wistar rats. MFE-M, with low safrole and myristicin content, did not cause skin irritation and exhibited an anti-acne effect; moreover, 2 was identified as the active substance. Therefore, MFE-M could be employed to develop anti-acne compounds for use in cosmetics.

Planta Medica ◽  
2021 ◽  
Author(s):  
Fadilah Kurrimboccus ◽  
Ané Orchard ◽  
Michael Paul Danckwerts ◽  
Sandy van Vuuren

AbstractAcne is a skin condition arising from excess sebum production and microbial overgrowth within the pilosebaceous unit. Several commercial essential oils have shown promising activity against acne-related pathogens. Due to their volatility and thermal instability, the formulation of essential oils into commercial products remains a pharmaceutical challenge. Thus, this study aimed to develop a viable anti-acne topical treatment as an oil-in-water emulsified lotion to overcome these challenges. Chrysopogon zizanioides (vetiver) displayed noteworthy antimicrobial activity with a mean minimum inhibitory concentration of 0.14 mg/mL against Cutibacterium acnes, Staphylococcus aureus, Staphylococcus epidermidis, and Streptococcus pyogenes. Emulsified lotions containing C. zizanioides were developed through the hydrophilic-lipophilic balance approach. At tested hydrophilic-lipophilic balance values of 8, 9, and 10, C. zizanioides emulsified lotions displayed maximum stability at hydrophilic-lipophilic balance 9 with a minimum change in mean droplet size and polydispersity index of 20.61 and 33.33%, respectively, over 84 days. The C. zizanioides emulsified lotion at optimum hydrophilic-lipophilic balance 9 completely inhibited the growth of C. acnes and killed S. aureus, S. epidermidis, and S. pyogenes within 24 h. Additionally, the lotion retained antimicrobial activity against these test micro-organisms over the 84-day stability test period. Thus, the C. zizanioides emulsified lotion demonstrated physical stability and antimicrobial efficiency, making it an ideal natural product anti-acne treatment.


2011 ◽  
Vol 89 (3) ◽  
pp. 523-528 ◽  
Author(s):  
Rafaela K. Lima ◽  
Maria das Graças Cardoso ◽  
Milene A. Andrade ◽  
Paula L. Guimarães ◽  
Luís R. Batista ◽  
...  

Marine Drugs ◽  
2020 ◽  
Vol 18 (10) ◽  
pp. 487
Author(s):  
Li-Wei Chen ◽  
Hsuan-Lien Chung ◽  
Ching-Chiung Wang ◽  
Jui-Hsin Su ◽  
Yu-Ju Chen ◽  
...  

Acne is a skin disease common in adolescents and increasingly common in the adult population. The major pathologic events of acne vulgaris include increased sebum production, retention hyperkeratosis, carrying commensal skin microbiota, and inflammation. In recent years, more than 10,000 compounds have been isolated and identified from marine organisms. The aim of this study was to discover the potential anti-acne activity of fraction 9 + 10 (SF-E) of Sinularia flexibilis extract and six cembrene diterpenoids. We found that the SF-E significantly reduced Cutibacterium acnes-induced edema in Wistar rat ears. The cembrene diterpenoids including 11-dehydrosinulariolide (SC-2), 3,4:8,11-bisepoxy-7-acetoxycembra-15(17)-en-1,12-olide (SC-7), and sinularin (SC-9) reduced nitric oxide (NO) production with 50% inhibitory concentration of 5.66 ± 0.19, 15.25 ± 0.25, and 3.85 ± 0.25 μM, respectively, and inducible NO synthase expression in RAW 264.7 cells. Moreover, treatment with SC-2, SC-7, and SC-9 significantly suppressed lipopolysaccharide- and heat-killed C. acnes-induced expression of proteins involved in mitogen-activated protein kinase pathway in both RAW 264.7 and HaCaT cells. After treatment with SC-2, SC-7, and SC-9, over-proliferation of HaCaT cells was significantly terminated. In summary, SC-2, SC-7, and SC-9 showed anti-inflammatory effects in RAW 264.7 cells, suggesting that these cembrene diterpenoids obtained from S. flexibilis are natural marine products with potential anti-acne activities.


2016 ◽  
Vol 11 (10) ◽  
pp. 1934578X1601101
Author(s):  
Alev Tosun ◽  
Jaemoo Chun ◽  
Igor Jerković ◽  
Zvonimir Marijanović ◽  
Maurizio A. Fenu ◽  
...  

The anti-inflammatory activity of the essential oils from Seseli corymbosum subsp. corymbosum Pall. ex Sm. (SC) and Seseli gummiferum Boiss. & Heldr. subsp. corymbosum (SG) was investigated for the first time on lipopolysaccharide (LPS)-stimulated RAW 264.7 cells. The main constituents (determined by GC-FID and GC-MS analyses) were germacrene D (54.1%) and sabinene (22.4%) in SG oil and β-phellandrene (29.2%), α-phellandrene (8.2%) and germacrene D (2.5%) in SC oil. SC and SG oils inhibited nitric oxide (NO) production with IC50 values of 56.1 and 108.2 μg/mL, respectively. The oils also inhibited prostaglandin E2 (PGE2) with IC50 values of 49.4 μg/mL (SC oil) and 95.5 μg/mL (SG oil). The inhibitory effect of SC and SG oils was accompanied by dose-dependent decreases of inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) protein expressions in LPS-induced RAW 264.7 cells. The research of the reporter gene assay on nuclear factor κB (NF-κB) showed that SC and SG oils inhibited NF-κB transcriptional activity. The obtained results suggest that SC and SG oils exert the anti-inflammatory effects in LPS-stimulated RAW 264.7 cells by suppressing NF-κB activation.


2014 ◽  
Vol 9 (7) ◽  
pp. 1934578X1400900 ◽  
Author(s):  
Ren Li ◽  
Jing-jing Yang ◽  
Yuan-fei Wang ◽  
Qian Sun ◽  
Hua-bin Hu

The present study is the first investigation of the chemical composition, antioxidant, antimicrobial and anti-inflammatory activities of the stem and leaf essential oils from Piper flaviflorum C.DC (SEOP and LEOP), a plant that has been consumed as a wild vegetable, and used as medicine, and spice by the ethnic groups in Xishuangbanna, SW China. Analyzed by GC-MS, 42 and 30 components were identified representing 90.1% and 95.3% of the SEOP and LEOP, with (E)-nerolidol (16.7% and 40.5%), β-caryophyllene (26.6% and 14.6%) and elixene (5.3% and 12.3%) as their main constituents, respectively. Our results indicate that SEOP and LEOP have good anti-inflammatory activity by significantly inhibiting NO production induced by LPS in RAW 264.7 cells at 0.04± without effect on cell viability, and negligible antioxidant activity in both ABTS and FRAP assays. Moreover, the LEOP showed comparable activity with the positive control (tigecycline) against Aspergillus fumigatus, with MIC and MBC values ranging from 256 to 1024 μg/mL. The anti-inflammatory activity in LPS-induced RAW 264.7 cells is worthy of further investigation to discover the possible mechanisms of the NO production inhibition effect of these essential oils.


2018 ◽  
Vol 18 (1) ◽  
pp. 11-17 ◽  
Author(s):  
Binawati Ginting ◽  
Ratna Maira ◽  
Mustanir . ◽  
Hira Helwati ◽  
Lydia Septa Desiyana ◽  
...  

The essential oil of the nutmeg plant (Myristica fragrans Houtt) has been obtained from roots, bark, fruit, mace and seeds using Stahl steam distillation. Each essential oil have tested for antioxidant activity with DPPH. Antioxidant activity of essential oil from each nutmeg plant to DPPH with concentration 25, 50 and 100 ppm. Each essential oil did not show strong antioxidant activity but the result of nutmeg isolation had strong antioxidant activity with IC50 that was 80,555 ppm. Based on GC-MS analysis of essential oil of nutmeg isolate obtained myristicin compound with 96.52% area and time Retention 22.127. Myristicin is one of the main components of essential oils of nutmeg plants that play an important role as antioxidants. Keywords: Nutmeg plant (Myristica fragrans Houtt), Essential Oil, DPPH, Antioxidant radicalsREFERENCES Suryanti, Siti. 2014. Metabolit Sekunder Pada Tanaman dan Fungsinya. http://seputarduniasains.blogspot.com Diakses tanggal 2 juni 2015. Gupta, A. D., Bansal, V. K., Babu, V., Maithil, N. 2013. Chemistry, antioxidant and antimicrobial potential of nutmeg (Myristica fregrans Houtt) Journal of Genetic Engineering and Biotechnologyh 11:25-31. Rodianawati, I., Hastuti, P., Cahyanto, M. N. 2015. Nutmeg’s (Myristica fragrans Houtt) Oleoresin: Effect of Heating to Chemical Compositions and Antifungal Properties Procedia Food Science 3:244-254. Masyithah, Z. 2006. Pengaruh Volume dan Konsentrasi Pelarut pada Isolasi Trimiristin dari Limbah Buah Pala Jurnal Teknologi Proses 5(1) Januari; 64-67. Wibowo, S dan Komarayati, S. 2015. Sifat Fisiko Kimia Minyak Cupresus (Cupressus benthamii) Asal Aek Nauli, Parapat Sumatera Utara Jurnal Penelitian Hasil Hutan 33 (2) Juni 2015: 93-103. Nurdjannah, N. 2007. Teknologi Pengolahan Pala. Badan Penelitian dan Pengembangan Pertanian. Bogor. Hellen, M, Vargheese, T.N, Kumari, J, Abiramy, Sajina, Sree, J, 2012, Phytochemical Analysis and Anticancer Activity of Essential Oil From Myristica fragrans, International Journal of Current Pharmaceutical Review and Research. Chatterjee, S, Zareena Niaz, S. Gautam, Soumyakanti Adhikari, Prasad S. Variyar, Arun Sharma, 2007, Antioxidant Activity of Some Phenolic Constituents from Green Pepper (Piper nigrum L.) and Fresh Nutmeg Mace (Myristica fragrans) J. Food Chemistry 101, 515–523. Sulaiman, S. F and Kheng, L. O. 2012. Antioxidant and anti food-borne bacterial activities of extracts from leaf and different fruit parts of Myristica fragrans Houtt. Food Control 25:533-536.Akinboro, A, Kamaruzzaman, M. B, Asmawi, M. Z, Sulaiman, S. F, Sofiman, O. H. 2011. Antioxidans in Aqueous extract of Mirystica fragrans (Houtt) Suppress Mitosis and Cyclophosphamide-induce chromosomal aberrations in Allium cepa L. Cells, Journal of Zhejiang University-SCIENCE B (Biomedicine & Biotechnology). ISSN 1673-1581 (Print); ISSN 1862-1783 (Online).www.zju.edu.cn/jzus; www.springerlink.comGinting, B., 2013, Aktifitas Antifungi Ektrak Daun Pala (Mirystica fragrans Houtt), Prosiding Seminar Nasional Kimia tahun 2013. Ginting, B, T. Barus, P, Simanjuntak, L. marpaung., 2013, Isolasi dan Sifat Antioksidan Total Flavonoid Daun Pala (Mirystica fragrans Houtt), Prosiding Seminar Nasional Kimia, Samarinda Ginting, B, T. Barus, P, Simanjuntak, L. marpaung.,2013, Isolasi dan Dan Penentuan Aktivitas Antioksidan  Total Alkaloid Daun Pala (Mirystica fragrans Houtt), Prosiding Seminar Nasional Yusuf Banseh Ginting, B, T. Barus, P, Simanjuntak, L. marpaung., 2016, Isolation and Identification of Flavonoid Compound from Nutmeg Leaves (Mirystica fragrans Houtt), Asian Journal Of Chemistry. Ginting, B., Mustanir., Helwati, H., Desiyana, L. S., Eralisa, Mujahid, R. 2017.  Antioxidant Activity Of N-Hexane Extract Of Nutmeg Plants From South Aceh Province. Jurnal Natural 17(1) Ramaswany, V. N., Varghese, A., Simon. 2011. An Investigation on Cytotoxic Ternatea L International Journal of Drug Discovery 3: 74-77. ISSN : 0975-4423. Guenther, E. 1987. Minyak Atsiri Jilid 1, terjemahan dari: Essensial oil. Penerjemah: Ketaren S, Universitas Indonesia Press, Jakarta.Harborne, J.B. 1987. Metode Fitokimia: Penentuan Cara Moderen Menganalisa Tumbuhan. Terjemahan dari Phytochemical Methods oleh Kosasih Padmawinata. ITB. Bandung.Sipahelut, S. G. 2012. Karakteristik Minyak Daging Buah Pala (Myristica fragrans Houtt) Melalui Beberapa Cara Pengeringan Dan Distilasi Journal Agroforestri 7(1) Maret 2012.Andini, V., Gupta, S., Chatterejee, S., Variyar, P.S and Sharma, A. 2015. Activity Guided Characterization of Antioxidant Components from Essential Oil of Nutmeg (Myristica fragrans). Vol 52; 221-230.Nagja, T., Vimal, K, Sanjeev, A. 2015. Myristica fragrans: A Comprehensive Review International Journal of Pharmacy and Pharmaceutical Sciences 8 (2).Isnindar., Wahyuono, S., Setyowati, E.P. 2011. Isolasi dan Identifikasi Senyawa Antioksidan Daun Kesemek (Diospyros kaki Thunb.) dengan Metode DPPH (2,2-difenil-1-pikrilhidrazil). Majalah Obat Tradisional. 16(3), 157-164.Ramy, M., Fayed, S.A and Mahmoud, G.I. 2010. Chemical Compositions, Antiviral and Activities of Seven Essential Oils. Journal of Applied Sciences Research. 6(1); 50-62.Indriaty, F., Assah, Y., Mamahani, S.N. 2015. Serbuk minuman berbasis daging buah pala. Baristand. Manado.Morita, T., Jinni, K., Kawagishi, H., Arimoto, Y., Suganuma, H., Inakuma, T, and Sigiyama, K. 2003. Hepatoprotective Effect or Myristicin from Nutmeg (Myristica fragrans) on Lipopolisaccaride/d-galactosamine-induced Liver Injury. J. Agric. Food Chem. 15(6):1.560-1.565.Syarifuddin, I., Kaimudin, M., Torry, R.F., dan Biantoro, R. 2014. Isolasi Trimiristin Minyak Pala Banda Serta Pemanfaatannya Sebagai Bahan Aktif Sabun Jurnal Riset Industri 8(1); 23-31.


2018 ◽  
Vol 25 (23) ◽  
pp. 22541-22551 ◽  
Author(s):  
Diego Gomes da Rocha Voris ◽  
Luciana dos Santos Dias ◽  
Josélia Alencar Lima ◽  
Keila dos Santos Cople Lima ◽  
José Bento Pereira Lima ◽  
...  

Author(s):  
Diki Prayugo Wibowo ◽  
Yessi Febriana ◽  
Hesti Riasari ◽  
Diah Lia Auilifa

West Java is rich in essential oil-producing plants, essential oils known to be responsible for some pharmacological activities among its antioxidant and antimicrobial. This research aims to know antimicrobial, antioxidant activity and identify the components of a compound essential oil of nutmeg (Myristica fragrans Houtt.). Components chemistry identified with GC-MS (Gas Chromatography-Mass pectrometer). Antioxidant activity measured by using the DPPH method (2 2-diphenyl-1-picrylhydrazyl) at 516 λ wavelength absorbance. Antimicrobial activity determined Minimum Inhibitory Concentrations (MIC) and Minimum Bactericidal Concentrations (MBC) using microdilution method. The result of GC-MS showed the highest component on nutmeg containing 22.22% myristicin. The antioxidant test showed nutmeg had IC50 at 3,16%, essential oil showed antibacterial activity against Gram positive and Gram negative bacteria. Minimum inhibitory concentrations of essential oils range from 0.313% to 10%. The content of essential oils of nutmeg plants that grow in the area of West Java Garut can be used to overcome the problems of antioxidants and antimicrobial.Key words: Antioxidant, Antibacterial, Pala (Myristica fragrans Houtt), Chemical Composition.


Sign in / Sign up

Export Citation Format

Share Document