scholarly journals Bis-Phenoxo-CuII2 Complexes: Formal Aromatic Hydroxylation via Aryl-CuIII Intermediate Species

Molecules ◽  
2020 ◽  
Vol 25 (20) ◽  
pp. 4595
Author(s):  
Xavi Ribas ◽  
Raül Xifra ◽  
Xavier Fontrodona

Ullmann-type copper-mediated arylC-O bond formation has attracted the attention of the catalysis and organometallic communities, although the mechanism of these copper-catalyzed coupling reactions remains a subject of debate. We have designed well-defined triazamacrocyclic-based aryl-CuIII complexes as an ideal platform to study the C-heteroatom reductive elimination step with all kinds of nucleophiles, and in this work we focus our efforts on the straightforward synthesis of phenols by using H2O as nucleophile. Seven well-defined aryl-CuIII complexes featuring different ring size and different electronic properties have been reacted with water in basic conditions to produce final bis-phenoxo-CuII2 complexes, all of which are characterized by XRD. Mechanistic investigations indicate that the reaction takes place by an initial deprotonation of the NH group coordinated to CuIII center, subsequent reductive elimination with H2O as nucleophile to form phenoxo products, and finally air oxidation of the CuI produced to form the final bis-phenoxo-CuII2 complexes, whose enhanced stability acts as a thermodynamic sink and pushes the reaction forward. Furthermore, the corresponding triazamacrocyclic-CuI complexes react with O2 to undergo 1e− oxidation to CuII and subsequent C-H activation to form aryl-CuIII species, which follow the same fate towards bis-phenoxo-CuII2 complexes. This work further highlights the ability of the triazamacrocyclic-CuIII platform to undergo aryl-OH formation by reductive elimination with basic water, and also shows the facile formation of rare bis-phenoxo-CuII2 complexes.

2019 ◽  
Vol 97 (7) ◽  
pp. 529-537 ◽  
Author(s):  
Richard J. Puddephatt

The isomerization and reductive elimination reactions from octahedral organometallic complexes of palladium(IV) and platinum(IV) usually occur through five-coordinate intermediates that cannot be directly detected. This paper reports a computational study of five-coordinate complexes of formulae [PtMe3(bipy)]+, [PtMe2Ph(bipy)]+, and [PtMe(CH2CMe2C6H4)(bipy)]+ (M = Pd or Pt, bipy = 2,2′-bipyridine), particularly with respect to reactivity and selectivity in reductive elimination. All of the complexes are predicted to have square pyramidal structures with the bipy and two R groups in the equatorial positions and one R group in the axial position, and axial–equatorial exchange occurs by a pairwise mechanism, with the transition state having a pinched trigonal bipyramidal (PTBP) stereochemistry, with one nitrogen and two R groups in the trigonal plane. The activation energy for isomerization is lower than that for reductive elimination in all cases. For the complexes [MMe2Ph(bipy)]+, the activation energies for reductive elimination with Me–Me or Me–Ph coupling are similar. For the complexes [MMe(CH2CMe2C6H4)(bipy)]+, the reductive elimination with Me–C6H4 bond formation from the isomer with the methyl group in the axial position is predicted and is attributed to it having the best conformation of the Me and C6H4 groups for C–C bond formation. In all cases, the selectivity for reductive elimination is similar for M = Pd or Pt, but reactivity is higher for M = Pd. The relevance of this work to selectivity in catalysis is discussed.


2019 ◽  
Author(s):  
Randolph Escobar ◽  
Jeffrey Johannes

<div>While carbon-heteroatom cross coupling reactions have been extensively studied, many methods are specific and</div><div>limited to a set of substrates or functional groups. Reported here is a method that allows for C-O, C-N and C-S cross coupling reactions under one general methodology. We propose that an energy transfer pathway, in which an iridium photosensitizer produces an excited nickel (II) complex, is responsible for the key reductive elimination step that couples aryl halides to 1° and 2° alcohols, anilines, thiophenols, carbamates and sulfonamides.</div>


1982 ◽  
Vol 104 (2) ◽  
pp. 619-621 ◽  
Author(s):  
Mario J. Nappa ◽  
Roberto Santi ◽  
Steven P. Diefenbach ◽  
Jack Halpern

Synlett ◽  
2021 ◽  
Author(s):  
Nana Kim ◽  
Van T. Tran ◽  
Omar Apolinar ◽  
Steven Wisniewski ◽  
Martin Eastgate ◽  
...  

Electron-deficient olefin (EDO) ligands are known to promote a variety of nickel-catalyzed cross-coupling reactions, presumably by accelerating the reductive elimination step and preventing undesired β-hydride elimination. While there is a growing body of experimental and computational evidence elucidating the beneficial effects of EDO ligands, significant gaps remain in our understanding of the underlying coordination chemistry of the Ni–EDO species involved. In particular, most procedures rely on in situ assembly of the active catalyst, and there is a paucity of pre-ligated Ni-EDO precatalysts. Herein, we investigate the 16-electron, heteroleptic nickel complex, Ni(COD)(DMFU), and examine the performance of this complex as a precatalyst in 1,2-diarylation of alkenes.


2018 ◽  
Vol 15 (7) ◽  
pp. 882-903 ◽  
Author(s):  
Jialin Liu ◽  
Xiaoyu Xiong ◽  
Jie Chen ◽  
Yuntao Wang ◽  
Ranran Zhu ◽  
...  

Background: Among the numerous bond-forming patterns, C–C bond formation is one of the most useful tools for building molecules for the chemical industry as well as life sciences. Recently, one of the most challenging topics is the study of the direct coupling reactions via multiple C–H bond cleavage/activation processes. A number of excellent reviews on modern C–H direct functionalization have been reported by Bergman, Bercaw, Yu and others in recent years. Among the large number of available methodologies, Pdcatalyzed reactions and hypervalent iodine reagent mediated reactions represent the most popular metal and non-metal involved transformations. However, the comprehensive summary of the comparison of metal and non-metal mediated transformations is still not available. Objective: The review focuses on comparing these two types of reactions (Pd-catalyzed reactions and hypervalent iodine reagent mediated reactions) based on the ways of forming new C–C bonds, as well as the scope and limitations on the demonstration of their synthetic applications. Conclusion: Comparing the Pd-catalyzed strategies and hypervalent iodine reagent mediated methodologies for the direct C–C bond formation from activation of C-H bonds, we clearly noticed that both strategies are powerful tools for directly obtaining the corresponding pruducts. On one hand, the hypervalent iodine reagents mediated reactions are normally under mild conditions and give the molecular diversity without the presence of transition-metal, while the Pd-catalyzed approaches have a broader scope for the wide synthetic applications. On the other hand, unlike Pd-catalyzed C-C bond formation reactions, the study towards hypervalent iodine reagent mediated methodology mainly focused on the stoichiometric amount of hypervalent iodine reagent, while few catalytic reactions have been reported. Meanwhile, hypervalent iodine strategy has been proved to be more efficient in intramolecular medium-ring construction, while there are less successful examples on C(sp3)–C(sp3) bond formation. In summary, we have demonstrated a number of selected approaches for the formation of a new C–C bond under the utilization of Pd-catalyzed reaction conditions or hyperiodine reagents. The direct activations of sp2 or sp3 hybridized C–H bonds are believed to be important strategies for the future molecular design as well as useful chemical entity synthesis.


2019 ◽  
Author(s):  
Dengmengfei Xiao ◽  
Lili Zhao ◽  
Diego Andrada

Unstrained cyclic ketones can participate in cooperative Suzuki-Miyaura cross-coupling type reaction using rhodium(I)-based catalyst via C-C bond activation. The regioselectivity indicates a trend where the most substituted side is activated and it is controlled by the beta-substituents. In this work, Density Functional Theory (DFT) calculations have been carried out to disclose the underlying mechanism in the reaction of a ketone series and arylboronate using ylidene as ancillary ligand and pyridine as co-catalysts. The computed energies suggest the reductive elimination step with the highest energy while the reductive elimination has the highest energy barrier. By the means of the Activation Strain Model (ASM) of chemical reactivity, it is found that the ketone strain energy released on the oxidative addition does not control the relativity of the OA reactivity, but indeed is the interaction energy between Rh(I) and C-C bond the ruling effect. The effect of the beta-substituents on regioselectivity has been additionally studied.


2018 ◽  
Vol 47 (18) ◽  
pp. 6333-6343 ◽  
Author(s):  
Lucy Currie ◽  
Luca Rocchigiani ◽  
David L. Hughes ◽  
Manfred Bochmann

Thiols were found to cleave Au–C bonds in (C^N^C)gold(iii) pincer complexes and to induce C–S reductive elimination reactions, to give aryl thioethers.


Sign in / Sign up

Export Citation Format

Share Document