scholarly journals Raman Spectroscopy as Molybdenum and Tungsten Content Analysis Tool for Mesoporous Silica and Beta Zeolite Catalysts

Molecules ◽  
2020 ◽  
Vol 25 (21) ◽  
pp. 4918
Author(s):  
Romana Velvarská ◽  
Zdeněk Tišler ◽  
Veronika Raichlová ◽  
José Miguel Hidalgo-Herrador

Raman spectroscopy was used for the quantitative determination of Mo and W in Mo- and W-supported mesoporous silica (Mo/SBA-15 and W/SBA-15, respectively) and Mo-supported beta zeolite (Mo-BEA). Three Raman quantitative models were developed and optimized for the metal contents of Mo/SBA-15, W/SBA-15, and Mo/BEA. Subsequently, the models were characterized using the root mean square error of calibration (RMSEC), root mean square error of cross-validation (RMSECV), root mean square error of prediction (RMSEP), correlation coefficient, and predicted residual error sum of squares (PRESS) diagnostic function. The calibration range of the models were in the range of approximately 2–40 wt% for the SBA-15 support and 1–21 wt% for the BEA support because the BEA support presented lower Mo absorption than the SBA-15 support. The RMSEC, RMSECV, and RMSEP values were below 1.80% for all developed models. The highest and lowest correlation coefficients corresponded to the W/SBA-15 (0.9984) and Mo/BEA (0.9777) models, respectively. The change in catalyst support affected the mentioned chemometric parameters (Mo/SBA-15 vs. Mo/BEA). Subsequently, Raman spectroscopy combined with the temperature control stage was used to study the calcination of Mo/BEA, Mo/SBA-15, and W/SBA-15 using three-dimensional diagrams, in which the changes in catalyst structure were analyzed as functions of the temperature and time. Raman spectroscopy was determined to be a suitable analytical tool for the quantitative analysis of the metal contents of the catalyst and optimization of the calcination process. Therefore, Raman spectroscopy can be used during catalyst manufacturing.

Metals ◽  
2021 ◽  
Vol 11 (10) ◽  
pp. 1549
Author(s):  
Francis Gyakwaa ◽  
Tuomas Alatarvas ◽  
Qifeng Shu ◽  
Matti Aula ◽  
Timo Fabritius

Steel quality and properties can be affected by the formation of complex inclusions, including Ti-based inclusions such as TiN and Ti2O3 and oxides like Al2O3 and MgO·Al2O3 (MA). This study assessed the prospective use of Raman spectroscopy to characterize synthetic binary inclusion samples of TiN–Al2O3, TiN–MA, Ti2O3–MA, and Ti2O3–Al2O3 with varying phase fractions. The relative intensities of the Raman peaks were used for qualitative evaluation and linear regression calibration models were used for the quantitative prediction of individual phases. The model performance was evaluated with root mean square error of cross-validation (RMSECV) and root mean square error of prediction (RMSEP). For the raw Raman spectra data, R2 values were between 0.48–0.98, the RMSECV values varied between 3.26–14.60 wt%, and the RMSEP ranged between 2.98–15.01 wt% for estimating the phases. The SNV Raman spectra data had estimated R2 values within 0.94–0.99 and RMSECV and RMSEP values ranged between 2.50–3.26 wt% and 2.80–9.01 wt%, respectively, showing improved model performance. The study shows that the specific phases of TiN, Al2O3, MA, and Ti2O3 in synthetic inclusion mixtures of TiN–(Al2O3 or MA) and Ti2O3–(Al2O3 or MA) could be characterized by the Raman spectroscopy.


2020 ◽  
Vol 74 (6) ◽  
pp. 661-673 ◽  
Author(s):  
Liljana Makraduli ◽  
Petre Makreski ◽  
Katerina Goracinova ◽  
Stefan Stefov ◽  
Maja Anevska ◽  
...  

Content uniformity is a critical attribute for potent and low-dosage formulations of active pharmaceutical ingredient (API) that, in addition to the formulation parameters, plays pivotal role during pharmaceutical development and production. However, when API content is low, implementing a vibrational spectroscopic analytical tool to monitor the content and blend uniformity remains a challenging task. The aim of this study was to showcase the potentials of mid-infrared (MIR), near-infrared (NIR), and Raman spectroscopy for quantitative analysis of alprazolam (ALZ) in a low-content powder blends with lactose, which is used as a common diluent for tablets produced by direct compression. The offered approach might be further scaled up and exploited for potential application in the process analytical technology (PAT). Partial least square and orthogonal PLS (OPLS) methodologies were employed to build the calibration models from raw and processed spectral data (standard normal variate, first and second derivatives). The models were further compared regarding their main statistical indicators: correlation coefficients, predictivity, root mean square error of estimation (RMSEE), and root mean square error of cross-validation (RMSEEcv). All statistical models presented high regression and predictivity coefficients. The RMSEEcv for the optimal models was 1.118, 0.08, and 0.059% for MIR, NIR, and Raman spectroscopy, respectively. The scarce information content extracted from the ALZ NIR spectra and the major band overlapping with those from lactose monohydrate was the main culprit of poor accuracy in the NIR model, whereas the subsampling instrumental setup (resulting in a non-representative spectral acquisition of the sample) was regarded as a main limitation for the MIR-based calibration model. The OPLS models of the Raman spectra of the powder blends manifested favorable statistical indicators for the accuracy of the calibration model, probably due to the distinctive ALZ Raman pattern resulting in the largest number of predictive spectral points that were used for the mathematical modeling. Furthermore, the Raman scattering calibration model was optimized in narrower scanning range (1700–700 cm−1) and its prediction power was evaluated (root mean square error of prediction, RMSEP = 0.03%). Thus, the Raman spectroscopy presented the most favorable statistical indicators in this comparative study and therefore should be further considered as a PAT for the quantitative determination of ALZ in low-content powder blends.


2021 ◽  
Author(s):  
Jun Meng

<p>The El Niño Southern Oscillation (ENSO) is one of the most prominent interannual climate phenomena. Early and reliable ENSO forecasting remains a crucial goal, due to its serious implications for economy, society, and ecosystem. Despite the development of various dynamical and statistical prediction models in the recent decades, the “spring predictability barrier” remains a great challenge for long-lead-time (over 6 mo) forecasting. To overcome this barrier, here we develop an analysis tool, System Sample Entropy(SysSampEn), to measure the complexity (disorder) of the system composed of temperature anomaly time series in the Niño 3.4 region. When applying this tool to several near-surface air temperature and sea surface temperature datasets, we find that in all datasets a strong positive correlation exists between the magnitude of El Niño and the previous calendar year’s SysSampEn(complexity). We show that this correlation allows us to forecast the magnitude of an El Niño with a prediction horizon of 1 y and high accuracy (i.e., root-mean-square error=0.25<sup>◦</sup>C for the average of the individual datasets forecasts). For the recent two 2018 and 2019 El Niño events, our method forecasted weak El Niños with magnitudes of 1.11±0.23<sup>◦</sup>C and 0.69±0.25<sup>◦</sup>C, both within one root-mean-square error comparing to the observed magnitudes, i.e. 0.9<sup>◦</sup>C and 0.6<sup>◦</sup>C. Our framework presented here not only facilitates long-term forecasting of the El Niño magnitude but can potentially also be used as a measure for the complexity of other natural or engineering complex systems.</p>


Polymers ◽  
2019 ◽  
Vol 11 (10) ◽  
pp. 1698 ◽  
Author(s):  
Xuemei Guo ◽  
Zenan Lin ◽  
Yingjun Wang ◽  
Zhangping He ◽  
Mengmeng Wang ◽  
...  

Polymer degradation is a common problem in the extrusion process. In this work, Raman spectroscopy, a robust, rapid, and non-destructive tool for in-line monitoring, was utilized to in-line monitor the degradation of polypropylene (PP) under multiple extrusions. Raw spectra were pretreated by chemometrics methods to extract variations of spectra and eliminate noise. The variation of Raman intensity with the increasing number of extrusions was caused by the scission of PP chains and oxidative degradation, and the variation trend of Raman intensity indicated that long chains were more likely to be damaged by the extrusion. For the quantitative analysis of degradation, the partial least square was used to build a model to predict the degree of PP degradation measured by gel permeation chromatography (GPC). For the calibration set, the coefficient of determination (R2) and the root mean square error of cross-validation (RMSECV) were 0.9859 and 1.2676%, and for the prediction set, R2 and the root mean square error of prediction (RMSEP) were 0.9752 and 1.7228%, which demonstrated the accuracy of the proposed model. The in-line Raman spectroscopy combined with the chemometrics methods was proved to be an accurate and highly effective tool, which can monitor the degradation of polymer in real time.


2021 ◽  
Vol 13 (9) ◽  
pp. 1630
Author(s):  
Yaohui Zhu ◽  
Guijun Yang ◽  
Hao Yang ◽  
Fa Zhao ◽  
Shaoyu Han ◽  
...  

With the increase in the frequency of extreme weather events in recent years, apple growing areas in the Loess Plateau frequently encounter frost during flowering. Accurately assessing the frost loss in orchards during the flowering period is of great significance for optimizing disaster prevention measures, market apple price regulation, agricultural insurance, and government subsidy programs. The previous research on orchard frost disasters is mainly focused on early risk warning. Therefore, to effectively quantify orchard frost loss, this paper proposes a frost loss assessment model constructed using meteorological and remote sensing information and applies this model to the regional-scale assessment of orchard fruit loss after frost. As an example, this article examines a frost event that occurred during the apple flowering period in Luochuan County, Northwestern China, on 17 April 2020. A multivariable linear regression (MLR) model was constructed based on the orchard planting years, the number of flowering days, and the chill accumulation before frost, as well as the minimum temperature and daily temperature difference on the day of frost. Then, the model simulation accuracy was verified using the leave-one-out cross-validation (LOOCV) method, and the coefficient of determination (R2), the root mean square error (RMSE), and the normalized root mean square error (NRMSE) were 0.69, 18.76%, and 18.76%, respectively. Additionally, the extended Fourier amplitude sensitivity test (EFAST) method was used for the sensitivity analysis of the model parameters. The results show that the simulated apple orchard fruit number reduction ratio is highly sensitive to the minimum temperature on the day of frost, and the chill accumulation and planting years before the frost, with sensitivity values of ≥0.74, ≥0.25, and ≥0.15, respectively. This research can not only assist governments in optimizing traditional orchard frost prevention measures and market price regulation but can also provide a reference for agricultural insurance companies to formulate plans for compensation after frost.


Forests ◽  
2021 ◽  
Vol 12 (8) ◽  
pp. 1020
Author(s):  
Yanqi Dong ◽  
Guangpeng Fan ◽  
Zhiwu Zhou ◽  
Jincheng Liu ◽  
Yongguo Wang ◽  
...  

The quantitative structure model (QSM) contains the branch geometry and attributes of the tree. AdQSM is a new, accurate, and detailed tree QSM. In this paper, an automatic modeling method based on AdQSM is developed, and a low-cost technical scheme of tree structure modeling is provided, so that AdQSM can be freely used by more people. First, we used two digital cameras to collect two-dimensional (2D) photos of trees and generated three-dimensional (3D) point clouds of plot and segmented individual tree from the plot point clouds. Then a new QSM-AdQSM was used to construct tree model from point clouds of 44 trees. Finally, to verify the effectiveness of our method, the diameter at breast height (DBH), tree height, and trunk volume were derived from the reconstructed tree model. These parameters extracted from AdQSM were compared with the reference values from forest inventory. For the DBH, the relative bias (rBias), root mean square error (RMSE), and coefficient of variation of root mean square error (rRMSE) were 4.26%, 1.93 cm, and 6.60%. For the tree height, the rBias, RMSE, and rRMSE were—10.86%, 1.67 m, and 12.34%. The determination coefficient (R2) of DBH and tree height estimated by AdQSM and the reference value were 0.94 and 0.86. We used the trunk volume calculated by the allometric equation as a reference value to test the accuracy of AdQSM. The trunk volume was estimated based on AdQSM, and its bias was 0.07066 m3, rBias was 18.73%, RMSE was 0.12369 m3, rRMSE was 32.78%. To better evaluate the accuracy of QSM’s reconstruction of the trunk volume, we compared AdQSM and TreeQSM in the same dataset. The bias of the trunk volume estimated based on TreeQSM was −0.05071 m3, and the rBias was −13.44%, RMSE was 0.13267 m3, rRMSE was 35.16%. At 95% confidence interval level, the concordance correlation coefficient (CCC = 0.77) of the agreement between the estimated tree trunk volume of AdQSM and the reference value was greater than that of TreeQSM (CCC = 0.60). The significance of this research is as follows: (1) The automatic modeling method based on AdQSM is developed, which expands the application scope of AdQSM; (2) provide low-cost photogrammetric point cloud as the input data of AdQSM; (3) explore the potential of AdQSM to reconstruct forest terrestrial photogrammetric point clouds.


2013 ◽  
Vol 860-863 ◽  
pp. 2783-2786
Author(s):  
Yu Bing Dong ◽  
Hai Yan Wang ◽  
Ming Jing Li

Edge detection and thresholding segmentation algorithms are presented and tested with variety of grayscale images in different fields. In order to analyze and evaluate the quality of image segmentation, Root Mean Square Error is used. The smaller error value is, the better image segmentation effect is. The experimental results show that a segmentation method is not suitable for all images segmentation.


2013 ◽  
Vol 807-809 ◽  
pp. 1967-1971
Author(s):  
Yan Bai ◽  
Xiao Yan Duan ◽  
Hai Yan Gong ◽  
Cai Xia Xie ◽  
Zhi Hong Chen ◽  
...  

In this paper, the content of forsythoside A and ethanol-extract were rapidly determinated by near-infrared reflectance spectroscopy (NIRS). 85 samples of Forsythiae Fructus harvested in Luoyang from July to September in 2012 were divided into a calibration set (75 samples) and a validation set (10 samples). In combination with the partical least square (PLS), the quantitative calibration models of forsythoside A and ethanol-extract were established. The correlation coefficient of cross-validation (R2) was 0.98247 and 0.97214 for forsythoside A and ethanol-extract, the root-mean-square error of calibration (RMSEC) was 0.184 and 0.570, the root-mean-square error of cross-validation (RMSECV) was 0.81736 and 0.36656. The validation set were used to evaluate the performance of the models, the root-mean-square error of prediction (RMSEP) was 0.221 and 0.518. The results indicated that it was feasible to determine the content of forsythoside A and ethanol-extract in Forsythiae Fructus by near-infrared spectroscopy.


Sign in / Sign up

Export Citation Format

Share Document