scholarly journals Structure-Function Insights of Jaburetox and Soyuretox: Novel Intrinsically Disordered Polypeptides Derived from Plant Ureases

Molecules ◽  
2020 ◽  
Vol 25 (22) ◽  
pp. 5338
Author(s):  
Matheus V. Coste Grahl ◽  
Fernanda Cortez Lopes ◽  
Anne H. Souza Martinelli ◽  
Celia R. Carlini ◽  
Leonardo L. Fruttero

Intrinsically disordered proteins (IDPs) and intrinsically disordered regions (IDRs) do not have a stable 3D structure but still have important biological activities. Jaburetox is a recombinant peptide derived from the jack bean (Canavalia ensiformis) urease and presents entomotoxic and antimicrobial actions. The structure of Jaburetox was elucidated using nuclear magnetic resonance which reveals it is an IDP with small amounts of secondary structure. Different approaches have demonstrated that Jaburetox acquires certain folding upon interaction with lipid membranes, a characteristic commonly found in other IDPs and usually important for their biological functions. Soyuretox, a recombinant peptide derived from the soybean (Glycine max) ubiquitous urease and homologous to Jaburetox, was also characterized for its biological activities and structural properties. Soyuretox is also an IDP, presenting more secondary structure in comparison with Jaburetox and similar entomotoxic and fungitoxic effects. Moreover, Soyuretox was found to be nontoxic to zebra fish, while Jaburetox was innocuous to mice and rats. This profile of toxicity affecting detrimental species without damaging mammals or the environment qualified them to be used in biotechnological applications. Both peptides were employed to develop transgenic crops and these plants were active against insects and nematodes, unveiling their immense potentiality for field applications.

2019 ◽  
Vol 73 (12) ◽  
pp. 713-725 ◽  
Author(s):  
Ruth Hendus-Altenburger ◽  
Catarina B. Fernandes ◽  
Katrine Bugge ◽  
Micha B. A. Kunze ◽  
Wouter Boomsma ◽  
...  

Abstract Phosphorylation is one of the main regulators of cellular signaling typically occurring in flexible parts of folded proteins and in intrinsically disordered regions. It can have distinct effects on the chemical environment as well as on the structural properties near the modification site. Secondary chemical shift analysis is the main NMR method for detection of transiently formed secondary structure in intrinsically disordered proteins (IDPs) and the reliability of the analysis depends on an appropriate choice of random coil model. Random coil chemical shifts and sequence correction factors were previously determined for an Ac-QQXQQ-NH2-peptide series with X being any of the 20 common amino acids. However, a matching dataset on the phosphorylated states has so far only been incompletely determined or determined only at a single pH value. Here we extend the database by the addition of the random coil chemical shifts of the phosphorylated states of serine, threonine and tyrosine measured over a range of pH values covering the pKas of the phosphates and at several temperatures (www.bio.ku.dk/sbinlab/randomcoil). The combined results allow for accurate random coil chemical shift determination of phosphorylated regions at any pH and temperature, minimizing systematic biases of the secondary chemical shifts. Comparison of chemical shifts using random coil sets with and without inclusion of the phosphoryl group, revealed under/over estimations of helicity of up to 33%. The expanded set of random coil values will improve the reliability in detection and quantification of transient secondary structure in phosphorylation-modified IDPs.


2019 ◽  
Author(s):  
Ruchi Lohia ◽  
Reza Salari ◽  
Grace Brannigan

<div>The role of electrostatic interactions and mutations that change charge states in intrinsically disordered proteins (IDPs) is well-established, but many disease-associated mutations in IDPs are charge-neutral. The Val66Met single nucleotide polymorphism (SNP) encodes a hydrophobic-to-hydrophobic mutation at the midpoint of the prodomain of precursor brain-derived neurotrophic factor (BDNF), one of the earliest SNPs to be associated with neuropsychiatric disorders, for which the underlying molecular mechanism is unknown. Here we report on over 250 μs of fully-atomistic, explicit solvent, temperature replica exchange molecular dynamics simulations of the 91 residue BDNF prodomain, for both the V66 and M66 sequence.</div><div>The simulations were able to correctly reproduce the location of both local and non-local secondary changes due to the Val66Met mutation when compared with NMR spectroscopy. We find that the local structure change is mediated via entropic and sequence specific effects. We show that the highly disordered prodomain can be meaningfully divided into domains based on sequence alone. Monte Carlo simulations of a self-excluding heterogeneous polymer, with monomers representing each domain, suggest the sequence would be effectively segmented by the long, highly disordered polyampholyte near the sequence midpoint. This is qualitatively consistent with observed interdomain contacts within the BDNF prodomain, although contacts between the two segments are enriched relative to the self-excluding polymer. The Val66Met mutation increases interactions across the boundary between the two segments, due in part to a specific Met-Met interaction with a Methionine in the other segment. This effect propagates to cause the non-local change in secondary structure around the second methionine, previously observed in NMR. The effect is not mediated simply via changes in inter-domain contacts but is also dependent on secondary structure formation around residue 66, indicating a mechanism for secondary structure coupling in disordered proteins. </div>


Author(s):  
Srinivas Ayyadevara ◽  
Akshatha Ganne ◽  
Meenakshisundaram Balasubramaniam ◽  
Robert J. Shmookler Reis

AbstractA protein’s structure is determined by its amino acid sequence and post-translational modifications, and provides the basis for its physiological functions. Across all organisms, roughly a third of the proteome comprises proteins that contain highly unstructured or intrinsically disordered regions. Proteins comprising or containing extensive unstructured regions are referred to as intrinsically disordered proteins (IDPs). IDPs are believed to participate in complex physiological processes through refolding of IDP regions, dependent on their binding to a diverse array of potential protein partners. They thus play critical roles in the assembly and function of protein complexes. Recent advances in experimental and computational analyses predicted multiple interacting partners for the disordered regions of proteins, implying critical roles in signal transduction and regulation of biological processes. Numerous disordered proteins are sequestered into aggregates in neurodegenerative diseases such as Alzheimer’s disease (AD) where they are enriched even in serum, making them good candidates for serum biomarkers to enable early detection of AD.


Life ◽  
2020 ◽  
Vol 10 (7) ◽  
pp. 109 ◽  
Author(s):  
Sandra S. Sullivan ◽  
Robert O.J. Weinzierl

Many of the proteins involved in key cellular regulatory events contain extensive intrinsically disordered regions that are not readily amenable to conventional structure/function dissection. The oncoprotein c-MYC plays a key role in controlling cell proliferation and apoptosis and more than 70% of the primary sequence is disordered. Computational approaches that shed light on the range of secondary and tertiary structural conformations therefore provide the only realistic chance to study such proteins. Here, we describe the results of several tests of force fields and water models employed in molecular dynamics simulations for the N-terminal 88 amino acids of c-MYC. Comparisons of the simulation data with experimental secondary structure assignments obtained by NMR establish a particular implicit solvation approach as highly congruent. The results provide insights into the structural dynamics of c-MYC1-88, which will be useful for guiding future experimental approaches. The protocols for trajectory analysis described here will be applicable for the analysis of a variety of computational simulations of intrinsically disordered proteins.


Entropy ◽  
2019 ◽  
Vol 21 (7) ◽  
pp. 654 ◽  
Author(s):  
Jiří Vymětal ◽  
Jiří Vondrášek ◽  
Klára Hlouchová

Intrinsically disordered proteins (IDPs) represent a distinct class of proteins and are distinguished from globular proteins by conformational plasticity, high evolvability and a broad functional repertoire. Some of their properties are reminiscent of early proteins, but their abundance in eukaryotes, functional properties and compositional bias suggest that IDPs appeared at later evolutionary stages. The spectrum of IDP properties and their determinants are still not well defined. This study compares rudimentary physicochemical properties of IDPs and globular proteins using bioinformatic analysis on the level of their native sequences and random sequence permutations, addressing the contributions of composition versus sequence as determinants of the properties. IDPs have, on average, lower predicted secondary structure contents and aggregation propensities and biased amino acid compositions. However, our study shows that IDPs exhibit a broad range of these properties. Induced fold IDPs exhibit very similar compositions and secondary structure/aggregation propensities to globular proteins, and can be distinguished from unfoldable IDPs based on analysis of these sequence properties. While amino acid composition seems to be a major determinant of aggregation and secondary structure propensities, sequence randomization does not result in dramatic changes to these properties, but for both IDPs and globular proteins seems to fine-tune the tradeoff between folding and aggregation.


Biomolecules ◽  
2019 ◽  
Vol 9 (4) ◽  
pp. 147 ◽  
Author(s):  
Prakash Kulkarni ◽  
Vladimir Uversky

It is now increasingly evident that a large fraction of the human proteome comprises proteins that, under physiological conditions, lack fixed, ordered 3D structures as a whole or have segments that are not likely to form a defined 3D structure [...]


2014 ◽  
Vol 206 (5) ◽  
pp. 579-588 ◽  
Author(s):  
Jeffrey A. Toretsky ◽  
Peter E. Wright

The partitioning of intracellular space beyond membrane-bound organelles can be achieved with collections of proteins that are multivalent or contain low-complexity, intrinsically disordered regions. These proteins can undergo a physical phase change to form functional granules or other entities within the cytoplasm or nucleoplasm that collectively we term “assemblage.” Intrinsically disordered proteins (IDPs) play an important role in forming a subset of cellular assemblages by promoting phase separation. Recent work points to an involvement of assemblages in disease states, indicating that intrinsic disorder and phase transitions should be considered in the development of therapeutics.


Sign in / Sign up

Export Citation Format

Share Document