scholarly journals The Effect of Growth Parameters on Electrophysical and Memristive Properties of Vanadium Oxide Thin Films

Molecules ◽  
2020 ◽  
Vol 26 (1) ◽  
pp. 118
Author(s):  
Roman V. Tominov ◽  
Zakhar E. Vakulov ◽  
Vadim I. Avilov ◽  
Daniil A. Khakhulin ◽  
Nikita V. Polupanov ◽  
...  

We have experimentally studied the influence of pulsed laser deposition parameters on the morphological and electrophysical parameters of vanadium oxide films. It is shown that an increase in the number of laser pulses from 10,000 to 60,000 and an oxygen pressure from 3 × 10−4 Torr to 3 × 10−2 Torr makes it possible to form vanadium oxide films with a thickness from 22.3 ± 4.4 nm to 131.7 ± 14.4 nm, a surface roughness from 7.8 ± 1.1 nm to 37.1 ± 11.2 nm, electron concentration from (0.32 ± 0.07) × 1017 cm−3 to (42.64 ± 4.46) × 1017 cm−3, electron mobility from 0.25 ± 0.03 cm2/(V·s) to 7.12 ± 1.32 cm2/(V·s), and resistivity from 6.32 ± 2.21 Ω·cm to 723.74 ± 89.21 Ω·cm. The regimes at which vanadium oxide films with a thickness of 22.3 ± 4.4 nm, a roughness of 7.8 ± 1.1 nm, and a resistivity of 6.32 ± 2.21 Ω·cm are obtained for their potential use in the fabrication of ReRAM neuromorphic systems. It is shown that a 22.3 ± 4.4 nm thick vanadium oxide film has the bipolar effect of resistive switching. The resistance in the high state was (89.42 ± 32.37) × 106 Ω, the resistance in the low state was equal to (6.34 ± 2.34) × 103 Ω, and the ratio RHRS/RLRS was about 14,104. The results can be used in the manufacture of a new generation of micro- and nanoelectronics elements to create ReRAM of neuromorphic systems based on vanadium oxide thin films.

2008 ◽  
Vol 587-588 ◽  
pp. 343-347 ◽  
Author(s):  
C. Batista ◽  
J. Mendes ◽  
Vasco Teixeira ◽  
Joaquim Carneiro

Vanadium oxides are a class of materials with outstanding physical and chemical properties. They find a wide field of technological applications such as optical and electrical switching devices, light detectors, temperature sensors, micro batteries, etc. There are several studies regarding the production of vanadium oxide films by radio-frequency (RF) magnetron sputtering, and with increasing interest on the thermochromic VO2 phase. However, literature with focus on vanadium oxide films deposited by direct current (DC) magnetron sputtering is very limited. In this work, we have successfully deposited vanadium oxide thin films by reactive DC magnetron sputtering under several processing conditions. The effect of substrate type, temperature, and O2/Ar flow ratio on phase formation has been studied. Structural analysis and phase determination have been carried out by X-ray diffractometry (XRD). Some single phase samples were also analysed with respect to surface morphology by means of scanning electron microscopy (SEM) and atomic force microscopy (AFM). The thermochromic behaviour of single phase VO2(M) films has been evaluated by optical spectrophotometry.


MRS Advances ◽  
2016 ◽  
Vol 1 (39) ◽  
pp. 2737-2742 ◽  
Author(s):  
Ying Deng ◽  
Anthony Pelton ◽  
R. A. Mayanovic

ABSTRACTPulsed laser deposition (PLD) is a technique which utilizes a high energy pulsed laser ablation of targets to deposit thin films on substrates in a vacuum chamber. The high-intensity laser pulses create a plasma plume from the target material which is projected towards the substrate whereupon it condenses to deposit a thin film. Here we investigate the properties of vanadium oxide thin films prepared utilizing two variations of the pulsed laser deposition (PLD) technique: femtosecond PLD and nanosecond PLD. Femtosecond PLD (f-PLD) has a significantly higher peak intensity and shorter duration laser pulse compared to that of the excimer-based nanosecond PLD (n-PLD). Experiments have been conducted on the growth of thin films prepared from V2O5 targets on glass substrates using f-PLD and n-PLD. Characterization using SEM, XRD and Raman spectroscopy shows that the f-PLD films have significantly rougher texture prior to annealing and exhibit with an amorphous nano-crystalline character whereas the thin films grown using n-PLD are much smoother and highly predominantly amorphous. The surface morphology, structural, vibrational, and chemical- and electronic-state elemental properties of the vanadium oxide thin films, both prior to and after annealing to 450 °C, will be discussed.


2004 ◽  
Vol 72 (4) ◽  
pp. 261-265 ◽  
Author(s):  
Naoaki KUMAGAI ◽  
Shinichi KOMABA ◽  
Osamu NAKANO ◽  
Mamoru BABA ◽  
Henri GROULT ◽  
...  

2009 ◽  
Vol 94 (22) ◽  
pp. 222110 ◽  
Author(s):  
S. S. N. Bharadwaja ◽  
C. Venkatasubramanian ◽  
N. Fieldhouse ◽  
S. Ashok ◽  
M. W. Horn ◽  
...  

2021 ◽  
Vol 23 (14) ◽  
pp. 8439-8445
Author(s):  
Ying Wang ◽  
Piotr Igor Wemhoff ◽  
Mikołaj Lewandowski ◽  
Niklas Nilius

Electron injection from an STM tip has been used to desorb individual vanadyl groups from vanadium oxide thin films. The underlying mechanism is analyzed from the bias and current dependence of the desorption rate.


2010 ◽  
Vol 16 (S2) ◽  
pp. 1654-1655
Author(s):  
BD Gauntt ◽  
EC Dickey

Extended abstract of a paper presented at Microscopy and Microanalysis 2010 in Portland, Oregon, USA, August 1 – August 5, 2010.


2018 ◽  
Vol 36 (1) ◽  
pp. 41-48 ◽  
Author(s):  
M. Seref Sonmez ◽  
Esma Yilmaz ◽  
Duygu Kalkan ◽  
Esra Ozkan Zayim

Sign in / Sign up

Export Citation Format

Share Document