scholarly journals Adsorption Studies of Waterborne Trihalomethanes Using Modified Polysaccharide Adsorbents

Molecules ◽  
2021 ◽  
Vol 26 (5) ◽  
pp. 1431
Author(s):  
Rui Guo ◽  
Lalita Bharadwaj ◽  
Lee D. Wilson

The adsorptive removal of trihalomethanes (THMs) from spiked water samples was evaluated with a series of modified polysaccharide adsorbents that contain β-cylodextrin or chitosan. The uptake properties of these biodegradable polymer adsorbents were evaluated with a mixture of THMs in aqueous solution. Gas chromatography employing a direct aqueous injection (DAI) method with electrolytic conductivity detection enabled quantification of THMs in water at 295 K and at pH 6.5. The adsorption isotherms for the polymer-THMs was evaluated using the Sips model, where the monolayer adsorption capacities ranged between 0.04 and 1.07 mmol THMs/g for respective component THMs. Unique adsorption characteristics were observed that vary according to the polymer structure, composition, and surface chemical properties. The modified polysaccharide adsorbents display variable molecular recognition and selectivity toward component THMs in the mixed systems according to the molecular size and polarizability of the adsorbates.

Holzforschung ◽  
2002 ◽  
Vol 56 (1) ◽  
pp. 91-97
Author(s):  
Kei Morisato ◽  
Yutaka Ishimaru ◽  
Hiroyuki Urakami

Summary To understand the swelling phenomenon of wood in liquids,the saturated amount of adsorption of liquids onto wood and the standard free energy changes of the adsorption were determined. The saturated amount of adsorption obtained by regression for several liquids decreased with increasing molecular size of the solvents. The mechanism of wood swelling is discussed systematically taking all the liquids examined in previous experiments into account. Since methanol molecules require more energy for release from cohesive interactions within bulk liquids in the adsorption onto pre-swollen wood,the values of free energy change of adsorption for methanol were lower than the values for acetone,although the relative swelling with methanol was higher. These results suggest that although the cohesive interaction within the bulk liquids reduces adsorptivity,the phenomenon of wood swelling is influenced not only by monolayer adsorption but also by multilayer adsorption. Therefore,the cohesive interaction within the bulk liquids reduces adsorptivity but enhances the condensation which strongly influences the swelling of wood.


Soil Research ◽  
1969 ◽  
Vol 7 (3) ◽  
pp. 229 ◽  
Author(s):  
JHA Butler ◽  
JN Ladd

Humic acids extracted from soil with sodium pyrophosphate have greater proportions of lower molecular weight material, less acid-hydrolysable amino acid nitrogen contents, but greater carboxyl contents and extinction values (260 and 450 nm) than humic acids extracted subsequently from the same sample with alkali. Humic acids extracted with alkali from fresh soil samples have intermediate values. Extinction values at 260 nm are directly correlated with carboxyl contents for a given soil. Different crop histories have no significant effect on the measured properties of the extracted humic acids. An alkali-extracted humic acid has been fractionated by gel filtration into seven fractions of different nominal molecular weight ranges. As the molecular weights of the fractions increase, both aliphatic C-H (based on infrared absorption at 2900 cm-1) and acid-hydrolysable amino acid contents increase, whereas extinction values at 260 nm and carboxyl contents decrease. The infrared spectra of the high molecular weight fractions have peaks at 1650 and 1510 cm-1 which correlate with acid-hydrolysable amino acid contents and which correspond to amide I and II bands of peptide bonds. Alkaline hydrolysis to split peptide bonds eliminates both these peaks. The spectra also have peaks at 1720 and 1210 cm-1 which correlate with the carboxyl content.


Holzforschung ◽  
2002 ◽  
Vol 56 (1) ◽  
pp. 51-59 ◽  
Author(s):  
P. Widsten ◽  
J.E. Laine ◽  
P. Qvintus-Leino ◽  
S. Tuominen

Summary The present paper aims at elucidating the effect of high-temperature defibration at different temperatures on the bulk and surface chemical properties of defibrated birch, aspen and eucalypt. The results indicate that defibration of these hardwoods results in partial depolymerization of fiber lignin via (homolytic) cleavage of interunit alkyl-aryl (β-O-4) ether bonds. This increases the phenolic hydroxyl content and produces relatively stable (phenoxy) radicals. Syringyl-type lignin is more extensively depolymerized than guaiacyl-type lignin. Defibration generates water-extractable material, which is enriched in hemicellulose-derived carbohydrates and has a substantial content of aromatic compounds rich in phenolic hydroxyl groups. The amount of water-extract and the extent of lignin interunit ether bond cleavage increase with an increase in defibration temperature. The differences between various hardwood species in this respect are small. The surface chemical composition of the fibers differs considerably from their bulk composition, but is not significantly influenced by variations in defibration temperature. Lipophilic extractives cover a large portion of the fiber surface, while the lignin content of lipophilic extractives-free fiber surfaces is 2–3 times as high as the bulk lignin content of the fibers.


Sign in / Sign up

Export Citation Format

Share Document