scholarly journals Isomerization of 5-(2H-Azirin-2-yl)oxazoles: An Atom-Economic Approach to 4H-Pyrrolo[2,3-d]oxazoles

Molecules ◽  
2021 ◽  
Vol 26 (7) ◽  
pp. 1881
Author(s):  
Timur O. Zanakhov ◽  
Ekaterina E. Galenko ◽  
Mariya A. Kryukova ◽  
Mikhail S. Novikov ◽  
Alexander A. Khlebnikov

An atom economical method for the preparation of variously substituted 4H-pyrrolo[2,3-d]oxazoles was developed on the basis of thermal isomerization of 5-(2H-azirin-2-yl)oxazoles. The latter were prepared by Rh2(oct)4 catalyzed reaction of 2-(3-aryl/heteroaryl)-2-diazoacetyl-2H-azirines with a set of substituted acetonitriles, benzonitriles, acrylonitrile and fumaronitrile. According to DFT calculations the transformation of 5-(2H-azirin-2-yl)oxazole to 4H-pyrrolo[2,3-d]oxazole occurs through the nitrenoid-like transition state to give a 3aH-pyrrolo[2,3-d]oxazole intermediate, followed by 1,5-H-shift.

2019 ◽  
Author(s):  
Clare Bakewell ◽  
Martí Garçon ◽  
Richard Y Kong ◽  
Louisa O'Hare ◽  
Andrew J. P. White ◽  
...  

The reactions of an aluminium(I) reagent with a series of 1,2-, 1,3- and 1,5-dienes are reported. In the case of 1,3-dienes the reaction occurs by a pericyclic reaction mechanism, specifically a cheletropic cycloaddition, to form aluminocyclopentene containing products. This mechanism has been interrogated by stereochemical experiments and DFT calculations. The stereochemical experiments show that the (4+1) cycloaddition follows a suprafacial topology, while calculations support a concerted albeit asynchronous pathway in which the transition state demonstrates aromatic character. Remarkably, the substrate scope of the (4+1) cycloaddition includes dienes that are either in part, or entirely, contained within aromatic rings. In these cases, reactions occur with dearomatisation of the substrate and can be reversible. In the case of 1,2- or 1,5-dienes complementary reactivity is observed; the orthogonal nature of the C=C π-bonds (1,2-diene) and the homoconjugated system (1,5-diene) both disfavour a (4+1) cycloaddition. Rather, reaction pathways are determined by an initial (2+1) cycloaddition to form an aluminocyclopropane intermediate which can in turn undergo insertion of a further C=C π-bond leading to complex organometallic products that incorporate fused hydrocarbon rings.


2017 ◽  
Vol 82 (7-8) ◽  
pp. 841-850
Author(s):  
Mohammad Taqavian ◽  
Daryoush Abedi ◽  
Fatemeh Zigheimat ◽  
Leila Zeidabadinejad

Ab initio and DFT calculations have been carried out to study the reaction mechanism between interferons (IFNs) ?-2a, ?-2b and ?-1a and polyethylene glycol (PEG) group. The calculations show that the mechanisms are concerted, in agreement with the results of experimental works. However, although it appears that there is one single transition state, the characteristics of its structure reveal a very synchronous reaction mechanism. The reactions are clearly exothermic and as well have feasible activation energies. Our computational study shows that the lowest transition state energies are related to Lys 134, His 34 and Met 1 of IFN-?-2a, IFN-?-2b and IFN-?-1a, respectively.


2020 ◽  
Author(s):  
Zi-Qi Li ◽  
Yue Fu ◽  
Ruohan Deng ◽  
Van Tran ◽  
Yang Gao ◽  
...  

<div>A nickel-catalyzed regiodivergent hydroarylation and hydroalkenylation of unactivated alkenyl carboxylic acids is reported, whereby the ligand environment around the metal center dictates the regiochemical outcome. Markovnikov hydrofunctionalization products are obtained under mild ligand-free conditions, with up to 99% yield and >20:1 selectivity. Alternatively, anti-Markovnikov products can be accessed with a novel 4,4-disubstituted Pyrox ligand in excellent yield and >20:1 selectivity. Both electronic and steric effects on the ligand contribute to the high yield and selectivity. Mechanistic studies suggest a change in the turnover-limiting and selectivity-determining step induced by the optimal ligand. DFT calculations reveal that in the anti-Markovnikov pathway, repulsion between the ligand and the alkyl group is minimized (by virtue of it being 1° versus 2°) in the rate- and regioselectivity-determining transmetalation transition state. <br></div>


2019 ◽  
Author(s):  
Clare Bakewell ◽  
Martí Garçon ◽  
Richard Y Kong ◽  
Louisa O'Hare ◽  
Andrew J. P. White ◽  
...  

The reactions of an aluminium(I) reagent with a series of 1,2-, 1,3- and 1,5-dienes are reported. In the case of 1,3-dienes the reaction occurs by a pericyclic reaction mechanism, specifically a cheletropic cycloaddition, to form aluminocyclopentene containing products. This mechanism has been interrogated by stereochemical experiments and DFT calculations. The stereochemical experiments show that the (4+1) cycloaddition follows a suprafacial topology, while calculations support a concerted albeit asynchronous pathway in which the transition state demonstrates aromatic character. Remarkably, the substrate scope of the (4+1) cycloaddition includes dienes that are either in part, or entirely, contained within aromatic rings. In these cases, reactions occur with dearomatisation of the substrate and can be reversible. In the case of 1,2- or 1,5-dienes complementary reactivity is observed; the orthogonal nature of the C=C π-bonds (1,2-diene) and the homoconjugated system (1,5-diene) both disfavour a (4+1) cycloaddition. Rather, reaction pathways are determined by an initial (2+1) cycloaddition to form an aluminocyclopropane intermediate which can in turn undergo insertion of a further C=C π-bond leading to complex organometallic products that incorporate fused hydrocarbon rings.


2019 ◽  
Author(s):  
Gregory Arzoumanidis ◽  
Ernest Chamot

TiCl 4 and ZrCl 4 each react with aryl substituted heteroaromatic ligands such as 2-Phenyl-1H-indole, to thermally undergo one-pot direct orthometallations, and yield new types of cyclometallated complexes. TiCl 4 coordinates at ambient temperature to form the indole complex ( 1 ), which undergoes isomerization to the indolenine ( 2 ). DFT calculations indicate that complex ( 2 ) is more stable than ( 1 ) by 6.4 kcal/mol. Upon warming to about 105°C, extrusion of HCl takes place with simultaneous orthometallation ( 3 ), yielding a metallacyclic complex ( 4 ). The mechanism of the orthometallation has been investigated by DFT, and the transition state c onfir med by IRC. At the elevated temperature the transition state ( 3 ) involves the synchronous transformation of four atoms, Ti, ortho C, H, and the apical Cl. The ortho C of the phenyl group acquires a partial positive charge through conjugation, forming a (C-H)δ + ...Clδ - interaction, with a simultaneous elongation and breaking of the Ti-Cl bond, resulting in the formation of a Ti-C bond. The latter bond is created at the same time a Ti-Cl bond is breaking, and an HCl is being formed, as illustrated in transition state ( 3 ). This HCl is retained in the crystal structure of the final product ( 4 ), by electrostatic interaction with one of the chloride ligands. The reaction sequence may be repeated with ZrCl 4 in place of TiCl 4 . Complex ( 4 ) has been isolated and characterized by solid state 13 C NMR CPMAS/DDMAS spectra, X-ray photoelectron spectroscopy (XPS), infrared and analytical data. The intermediate structures ( 1 through 4 ), as well as the sequence of ligand transformations to produce the ortho-metallated complex are supported by DFT calculations. The new cyclometallated complexes are thermally stable, unlike several other complexes featuring a Ti-C bond. They may have important applications, such as in α-olefin polymerization catalysis, and as building blocks in metalodrugs for cancer therapy.<br>


2013 ◽  
Vol 9 ◽  
pp. 1073-1082 ◽  
Author(s):  
Shinichi Yamabe ◽  
Guixiang Zeng ◽  
Wei Guan ◽  
Shigeyoshi Sakaki

A Bamberger rearrangement of N-phenylhydroxylamine, Ph–N(OH)H, to p-aminophenol was investigated by DFT calculations for the first time. The nitrenium ion, C6H5–NH+, suggested and seemingly established as an intermediate was calculated to be absent owing to the high nucleophilicity of the water cluster around it. First, a reaction of the monoprotonated system, Ph–N(OH)H + H3O+(H2O) n (n = 4 and 14) was examined. However, the rate-determining transition states involving proton transfers were calculated to have much larger activation energies than the experimental one. Second, a reaction of the diprotonated system, Ph–N(OH)H + (H3O+)2(H2O)13, was traced. An activation energy similar to the experimental one was obtained. A new mechanism of the rearrangement including the aniline dication-like transition state was proposed.


Sign in / Sign up

Export Citation Format

Share Document