scholarly journals An aniline dication-like transition state in the Bamberger rearrangement

2013 ◽  
Vol 9 ◽  
pp. 1073-1082 ◽  
Author(s):  
Shinichi Yamabe ◽  
Guixiang Zeng ◽  
Wei Guan ◽  
Shigeyoshi Sakaki

A Bamberger rearrangement of N-phenylhydroxylamine, Ph–N(OH)H, to p-aminophenol was investigated by DFT calculations for the first time. The nitrenium ion, C6H5–NH+, suggested and seemingly established as an intermediate was calculated to be absent owing to the high nucleophilicity of the water cluster around it. First, a reaction of the monoprotonated system, Ph–N(OH)H + H3O+(H2O) n (n = 4 and 14) was examined. However, the rate-determining transition states involving proton transfers were calculated to have much larger activation energies than the experimental one. Second, a reaction of the diprotonated system, Ph–N(OH)H + (H3O+)2(H2O)13, was traced. An activation energy similar to the experimental one was obtained. A new mechanism of the rearrangement including the aniline dication-like transition state was proposed.

2020 ◽  
Vol 8 (2) ◽  
pp. 219
Author(s):  
Mohd Yunus Shukor

Several models are available to determine the effect of temperature on the growth rate of microorganisms on substrates. An example is Arrhenius model, which is very popular because it has few parameters. For the first time, a discontinuous chevron-like graph of apparent activation energy based on the Arrhenius plot on the growth of 2-chloro-4-nitrophenol by Cupriavidus sp. is reported. The plot of ln mm against 1/T shows a discontinuous chevron-like graph for the entire investigated temperature range with an inflection at 27.75°C. This indicates that the existence of 2 activation energies for growth on 2-chloro-4-nitrophenol ranges from 20 to 40°C. Furthermore, a regression analysis from 20–25°C and 30–40°C results in activation energies of 88.71 kJmol-1 and 75.16kJ mol-1, respectively. This is probably the first time a Chevron-like graph was observed for the Arrhenius plot on the effect of temperature on the growth rate of 2-chloro-4-nitrophenol.


2003 ◽  
Vol 68 (6) ◽  
pp. 1105-1118 ◽  
Author(s):  
Zdenek Chval ◽  
Miroslav Šíp

Fully optimised HF and DFT transition states of cisplatin binding to adenine and guanine are presented for the first time. They have similar structure as the recently published transition states for cisplatin hydrolysis with the angle of about 70° between entering and leaving ligands and corresponding bonds prolonged up to 0.5 Å. Calculated activation energies are in the range of 10.5-18 kcal/mol. The lowest activation energies were found for the binding of cis-Pt[(NH3)2(H2O)(OH)]+ to guanine. The role of hydrogen bonds in recognition of binding sites, stabilisation of reactants and final yields of individual cisplatin-DNA adducts is discussed.


2013 ◽  
Vol 66 (8) ◽  
pp. 891 ◽  
Author(s):  
Nicole M. Cain ◽  
Josh L. Hixson ◽  
Dennis K. Taylor

Theoretical investigations on the treatment of bicyclic endoperoxides (1,2-dioxines) with ozone at the HF/6–31G*, MP2/6–31G* or 6–311G*, and DFT(B3LYP)/6–31G* levels of theory indicate that the estimated activation energies for formation of the possible endo-endo, endo-exo, exo-endo, or exo-exo transition states along with the formation of the primary ozonides and product ozonides are very sensitive to effects of electron correlation and basis set. This study suggests that MP2/6–311G* is the best level of theory for evaluating such systems. At the MP2/6–311G* level of theory it was found that the transition state for primary ozonide formation was lowest in energy when ozone approaches in an endo facial fashion with a further 3 kJ mol–1 stabilisation seen when the central oxygen within the primary ozonide protrudes outwards (exo) as opposed to inwards (endo). The product ozonides are predicted to be more stable than the combined starting materials by some 380–580 kJ mol–1 depending on the level of theory, clearly highlighting the substantive exothermic nature of this type of ozonolysis reaction.


2014 ◽  
Vol 10 ◽  
pp. 1765-1774 ◽  
Author(s):  
Shinichi Yamabe ◽  
Guixiang Zeng ◽  
Wei Guan ◽  
Shigeyoshi Sakaki

The Strecker reaction of acetaldehyde, NH3, and HCN to afford alanine was studied by DFT calculations for the first time, which involves two reaction stages. In the first reaction stage, the aminonitrile was formed. The rate-determining step is the deprotonation of the NH3 + group in MeCH(OH)-NH3 + to form 1-aminoethanol, which occurs with an activation energy barrier (ΔE ≠) of 9.6 kcal/mol. The stereochemistry (R or S) of the aminonitrile product is determined at the NH3 addition step to the carbonyl carbon of the aldehyde. While the addition of CN− to the carbon atom of the protonated imine 7 appears to scramble the stereochemistry, the water cluster above the imine plane reinforces the CN− to attack the imine group below the plane. The enforcement hinders the scrambling. In the second stage, the aminonitrile transforms to alanine, where an amide Me-CH(NH2)-C(=O)-NH2 is the key intermediate. The rate-determining step is the hydrolysis of the cyano group of N(amino)-protonated aminonitrile which occurs with an ΔE ≠ value of 34.7 kcal/mol. In the Strecker reaction, the proton transfer along the hydrogen bonds plays a crucial role.


2019 ◽  
Author(s):  
Clare Bakewell ◽  
Martí Garçon ◽  
Richard Y Kong ◽  
Louisa O'Hare ◽  
Andrew J. P. White ◽  
...  

The reactions of an aluminium(I) reagent with a series of 1,2-, 1,3- and 1,5-dienes are reported. In the case of 1,3-dienes the reaction occurs by a pericyclic reaction mechanism, specifically a cheletropic cycloaddition, to form aluminocyclopentene containing products. This mechanism has been interrogated by stereochemical experiments and DFT calculations. The stereochemical experiments show that the (4+1) cycloaddition follows a suprafacial topology, while calculations support a concerted albeit asynchronous pathway in which the transition state demonstrates aromatic character. Remarkably, the substrate scope of the (4+1) cycloaddition includes dienes that are either in part, or entirely, contained within aromatic rings. In these cases, reactions occur with dearomatisation of the substrate and can be reversible. In the case of 1,2- or 1,5-dienes complementary reactivity is observed; the orthogonal nature of the C=C π-bonds (1,2-diene) and the homoconjugated system (1,5-diene) both disfavour a (4+1) cycloaddition. Rather, reaction pathways are determined by an initial (2+1) cycloaddition to form an aluminocyclopropane intermediate which can in turn undergo insertion of a further C=C π-bond leading to complex organometallic products that incorporate fused hydrocarbon rings.


2019 ◽  
Author(s):  
Raghu Nath Dhital ◽  
keigo nomura ◽  
Yoshinori Sato ◽  
Setsiri Haesuwannakij ◽  
Masahiro Ehara ◽  
...  

Carbon-Fluorine (C-F) bonds are considered the most inert organic functionality and their selective transformation under mild conditions remains challenging. Herein, we report a highly active Pt-Pd nanoalloy as a robust catalyst for the transformation of C-F bonds into C-H bonds at low temperature, a reaction that often required harsh conditions. The alloying of Pt with Pd is crucial to activate C-F bond. The reaction profile kinetics revealed that the major source of hydrogen in the defluorinated product is the alcoholic proton of 2-propanol, and the rate-determining step is the reduction of the metal upon transfer of the <i>beta</i>-H from 2-propanol. DFT calculations elucidated that the key step is the selective oxidative addition of the O-H bond of 2-propanol to a Pd center prior to C-F bond activation at a Pt site, which crucially reduces the activation energy of the C-F bond. Therefore, both Pt and Pd work independently but synergistically to promote the overall reaction


Author(s):  
Niels Engholm Henriksen ◽  
Flemming Yssing Hansen

This chapter reviews the microscopic interpretation of the pre-exponential factor and the activation energy in rate constant expressions of the Arrhenius form. The pre-exponential factor of apparent unimolecular reactions is, roughly, expected to be of the order of a vibrational frequency, whereas the pre-exponential factor of bimolecular reactions, roughly, is related to the number of collisions per unit time and per unit volume. The activation energy of an elementary reaction can be interpreted as the average energy of the molecules that react minus the average energy of the reactants. Specializing to conventional transition-state theory, the activation energy is related to the classical barrier height of the potential energy surface plus the difference in zero-point energies and average internal energies between the activated complex and the reactants. When quantum tunnelling is included in transition-state theory, the activation energy is reduced, compared to the interpretation given in conventional transition-state theory.


Metals ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 581
Author(s):  
Abdulhakim A. Almajid

This study is focused on the deformation mechanism and behavior of naturally aged 7010 aluminum alloy at elevated temperatures. The specimens were naturally aged for 60 days to reach a saturated hardness state. High-temperature tensile tests for the naturally aged sample were conducted at different temperatures of 573, 623, 673, and 723 K at various strain rates ranging from 5 × 10−5 to 10−2 s−1. The dependency of stress on the strain rate showed a stress exponent, n, of ~6.5 for the low two temperatures and ~4.5 for the high two temperatures. The apparent activation energies of 290 and 165 kJ/mol are observed at the low, and high-temperature range, respectively. These values of activation energies are greater than those of solute/solvent self-diffusion. The stress exponents, n, and activation energy observed are rather high and this indicates the presence of threshold stress. This behavior occurred as a result of the dislocation interaction with the second phase particles that are existed in the alloy at the testing temperatures. The threshold stress decreases in an exponential manner as temperature increases. The true activation energy was computed by incorporating the threshold stress in the power-law relation between the stress and the strain. The magnitude of the true activation energy, Qt dropped to 234 and 102 kJ/mol at the low and high-temperature range, respectively. These values are close to that of diffusion of Zinc in Aluminum and diffusion of Magnesium in Aluminum, respectively. The Zener–Hollomon parameter for the alloy was developed as a function of effective stress. The data in each region (low and high-temperature region) coalescence in a segment line in each region.


Molecules ◽  
2021 ◽  
Vol 26 (13) ◽  
pp. 4083
Author(s):  
Heming Jiang ◽  
Tian-Yu Sun

A computational study on the origin of the activating effect for Pd-catalyzed directed C–H activation by the concerted metalation-deprotonation (CMD) mechanism is conducted. DFT calculations indicate that strong acids can make Pd catalysts coordinate with directing groups (DGs) of the substrates more strongly and lower the C–H activation energy barrier. For the CMD mechanism, the electrophilicity of the Pd center and the basicity of the corresponding acid ligand for deprotonating the C–H bond are vital to the overall C–H activation energy barrier. Furthermore, this rule might disclose the role of some additives for C–H activation.


2021 ◽  
Vol 10 (1) ◽  
pp. 011-020
Author(s):  
Luyao Kou ◽  
Junjing Tang ◽  
Tu Hu ◽  
Baocheng Zhou ◽  
Li Yang

Abstract Generally, adding a certain amount of an additive to pulverized coal can promote its combustion performance. In this paper, the effect of CaO on the combustion characteristics and kinetic behavior of semi-coke was studied by thermogravimetric (TG) analysis. The results show that adding proper amount of CaO can reduce the ignition temperature of semi-coke and increase the combustion rate of semi-coke; with the increase in CaO content, the combustion rate of semi-coke increases first and then decreases, and the results of TG analysis showed that optimal addition amount of CaO is 2 wt%. The apparent activation energy of CaO with different addition amounts of CaO was calculated by Coats–Redfern integration method. The apparent activation energy of semi-coke in the combustion reaction increases first and then decreases with the increase in CaO addition. The apparent activation energies of different samples at different conversion rates were calculated by Flynn–Wall–Ozawa integral method. It was found that the apparent activation energies of semi-coke during combustion reaction decreased with the increase in conversion.


Sign in / Sign up

Export Citation Format

Share Document