transition state analogs
Recently Published Documents


TOTAL DOCUMENTS

126
(FIVE YEARS 12)

H-INDEX

28
(FIVE YEARS 1)

2021 ◽  
Vol 29 ◽  
Author(s):  
Yves Blériot ◽  
Nicolas Auberger ◽  
Jérôme Désiré

Abstract: Glycosidases, the enzymes responsible for the breakdown of glycoconjugates including di-, oligo- and polysaccharides are ubiquitous through all kingdoms of life. The extreme chemical stability of the glycosidic bond combined with the catalytic rates achieved by glycosidases makes them among the most proficient of all enzymes. 
 Given their multitude of roles in vivo, inhibition of these enzymes is highly attractive with potential in the treatment of a vast array of pathologies ranging from lysosomal storage and diabetes to viral infections. Therefore great efforts have been invested in the last three decades to design and synthesize inhibitors of glycosidases leading to a number of drugs currently on the market. Amongst the vast array of structures that have been disclosed, sugars incorporating an amidine moiety have been the focus of many research groups around the world because of their glycosidase transition state-like structure. In this review we report and discuss the structure, the inhibition profile and the use of these molecules including related structural congeners as transition state analogs.


Author(s):  
Erin L. Higgins ◽  
Julian S. Kellner-Rogers ◽  
Alexandra M. Estanislau ◽  
Alec C. Esposito ◽  
Nora R. Vail ◽  
...  

2020 ◽  
Author(s):  
Erin Higgins ◽  
Julian Kellner-Rogers ◽  
Alexandra Estanislau ◽  
Alec Esposito ◽  
Nora R. Vail ◽  
...  

<p></p><p>Quorum sensing is a bacterial signaling system that involves the synthesis and detection of small signal molecules called autoinducers. A main class of autoinducers in Gram-negative bacteria are acylated homoserine lactones, produced by the LuxI family of autoinducer synthase enzymes and detected by the LuxR family of autoinducer receptors. Quorum sensing allows for changes in gene expression and bacterial behaviors in a coordinated, cell density dependent manner. Quorum sensing controls the expression of virulence factors in some human pathogens, making quorum sensing an antibacterial drug target. Here we describe the design and synthesis of transition-state analogs of the autoinducer synthase enzymatic reaction and evaluation of these compounds as inhibitors of the synthase CepI. One such compound potently inhibits CepI and constitutes a new type of inhibitor against this underdeveloped antibacterial target.</p><br><p></p>


2020 ◽  
Author(s):  
Erin Higgins ◽  
Julian Kellner-Rogers ◽  
Alexandra Estanislau ◽  
Alec Esposito ◽  
Nora R. Vail ◽  
...  

<p></p><p>Quorum sensing is a bacterial signaling system that involves the synthesis and detection of small signal molecules called autoinducers. A main class of autoinducers in Gram-negative bacteria are acylated homoserine lactones, produced by the LuxI family of autoinducer synthase enzymes and detected by the LuxR family of autoinducer receptors. Quorum sensing allows for changes in gene expression and bacterial behaviors in a coordinated, cell density dependent manner. Quorum sensing controls the expression of virulence factors in some human pathogens, making quorum sensing an antibacterial drug target. Here we describe the design and synthesis of transition-state analogs of the autoinducer synthase enzymatic reaction and evaluation of these compounds as inhibitors of the synthase CepI. One such compound potently inhibits CepI and constitutes a new type of inhibitor against this underdeveloped antibacterial target.</p><br><p></p>


2020 ◽  
Author(s):  
Erin Higgins ◽  
Julian Kellner-Rogers ◽  
Alexandra Estanislau ◽  
Alec Esposito ◽  
Nora R. Vail ◽  
...  

<p>Quorum sensing is a bacterial signaling system that involves the synthesis and subsequent detection of small signal molecules called autoinducers. The main autoinducer in gram-negative bacteria are acylated homoserine lactones (AHLs), produced by LuxI autoinducer synthase enzymes and detected by LuxR autoinducer receptors. Quorum sensing allows for changes in gene expression resulting bacterial behavior in a coordinated, cell-density dependent fashion. Some of the behaviors controlled by quorum sensing involve pathogenesis, making quorum sensing signaling a target to develop new antibacterial agents. Here we describe the design and synthesis of transition-state analogs of the autoinducer synthase enzymatic reaction and the evaluation of these compounds as inhibitors of the synthase CepI. One such compound potently inhibits CepI and constitutes a new type of inhibitor against this underdeveloped antibacterial target.</p>


2020 ◽  
Vol 7 (Supplement_1) ◽  
pp. S643-S643
Author(s):  
Maria F Mojica ◽  
Christopher Bethel ◽  
Emilia Caselli ◽  
Magdalena A Taracila ◽  
Fabio Prati ◽  
...  

Abstract Background Catalytic mechanisms of serine β-lactamases (SBL; classes A, C and D) and metallo-β-lactamases (MBLs) have directed divergent strategies towards inhibitor design. SBL inhibitors act as high affinity substrates that -as in BATSIs- form a reversible, dative covalent bond with the conserved active site Ser. MBL inhibitors bind the active-site Zn2+ ions and displace the nucleophilic OH-. Herein, we explore the efficacy of a series of BATSI compounds with a free-thiol group at inhibiting both SBL and MBL. Methods Exploratory compounds were synthesized using stereoselective homologation of (+) pinandiol boronates to introduce the amino group on the boron-bearing carbon atom, which was subsequently acylated with mercaptopropanoic acid. Representative SBL (KPC-2, ADC-7, PDC-3 and OXA-23) and MBL (IMP-1, NDM-1 and VIM-2) were purified and used for the kinetic characterization of the BATSIs. In vitro activity was evaluated by a modified time-kill curve assay, using SBL and MBL-producing strains. Results Kinetic assays revealed that IC50 values ranged from 1.3 µM to &gt;100 µM for this series. The best compound, s08033, demonstrated inhibitory activity against KPC-2, VIM-2, ADC-7 and PDC-3, with IC50 in the low μM range. Reduction of at least 1.5 log10-fold of viable cell counts upon exposure to sub-lethal concentrations of antibiotics (AB) + s08033, compared to the cells exposed to AB alone, demonstrated the microbiological activity of this novel compound against SBL- and MBL-producing E. coli (Table 1). Table 1 Conclusion Addition of a free-thiol group to the BATSI scaffold increases the range of these compounds resulting in a broad-spectrum inhibitor toward clinically important carbapenemases and cephalosporinases. Disclosures Robert A. Bonomo, MD, Entasis, Merck, Venatorx (Research Grant or Support)


Molecules ◽  
2020 ◽  
Vol 25 (18) ◽  
pp. 4334
Author(s):  
Kamila Janiszewska ◽  
Michał Talma ◽  
Bartosz Oszywa ◽  
Małgorzata Pawełczak ◽  
Paweł Kafarski ◽  
...  

Peptidyl enzyme inhibitors containing an internal aminomethylphosphinic bond system (P(O)(OH)-CH2-NH) can be termed extended transition state analogs by similarity to the corresponding phosphonamidates (P(O)(OH)-NH). Phosphonamidate pseudopeptides are broadly recognized as competitive mechanism-based inhibitors of metalloenzymes, mainly hydrolases. Their practical use is, however, limited by hydrolytic instability, which is particularly restricting for dipeptide analogs. Extension of phosphonamidates by addition of the methylene group produces a P-C-N system fully resistant in water conditions. In the current work, we present a versatile synthetic approach to such modified dipeptides, based on the three-component phospha-Mannich condensation of phosphinic acids, formaldehyde, and N-benzylglycines. The last-mentioned component allowed for simple and versatile introduction of functionalized P1′ residues located on the tertiary amino group. The products demonstrated moderate inhibitory activity towards porcine and plant metalloaminopeptidases, while selected derivatives appeared very potent with human alanyl aminopeptidase (Ki = 102 nM for 6a). Analysis of ligand-protein complexes obtained by molecular modelling revealed canonical modes of interactions for mono-metallic alanyl aminopeptidases, and distorted modes for di-metallic leucine aminopeptidases (with C-terminal carboxylate, not phosphinate, involved in metal coordination). In general, the method can be dedicated to examine P1′-S1′ complementarity in searching for non-evident structures of specific residues as the key fragments of perspective ligands.


Biomolecules ◽  
2020 ◽  
Vol 10 (5) ◽  
pp. 671
Author(s):  
Scott T. Lefurgy ◽  
Emilia Caselli ◽  
Magdalena A. Taracila ◽  
Vladimir N. Malashkevich ◽  
Beena Biju ◽  
...  

Boronic acid transition-state analog inhibitors (BATSIs) are partners with β-lactam antibiotics for the treatment of complex bacterial infections. Herein, microbiological, biochemical, and structural findings on four BATSIs with the FOX-4 cephamycinase, a class C β-lactamase that rapidly hydrolyzes cefoxitin, are revealed. FOX-4 is an extended-spectrum class C cephalosporinase that demonstrates conformational flexibility when complexed with certain ligands. Like other β-lactamases of this class, studies on FOX-4 reveal important insights into structure–activity relationships. We show that SM23, a BATSI, shows both remarkable flexibility and affinity, binding similarly to other β-lactamases, yet retaining an IC50 value < 0.1 μM. Our analyses open up new opportunities for the design of novel transition-state analogs of class C enzymes.


Sign in / Sign up

Export Citation Format

Share Document