scholarly journals Two Sides to One Story—Aroma Chemical and Sensory Signature of Lugana and Verdicchio Wines

Molecules ◽  
2021 ◽  
Vol 26 (8) ◽  
pp. 2127
Author(s):  
Davide Slaghenaufi ◽  
Giovanni Luzzini ◽  
Jessica Samaniego Solis ◽  
Filippo Forte ◽  
Maurizio Ugliano

Lugana and Verdicchio are two Italian white wines with a Protected Designation of Origin (PDO) label. These two wine types are produced in different regions using the same grape variety. The aim of this work is to investigate the existence of volatile chemical markers that could help to elucidate differences between Lugana and Verdicchio wines both at chemical and sensory levels. Thirteen commercial wine samples were analyzed by Gas Chromatography-Mass Spectrometry (GC-MS), and 76 volatile compounds were identified and quantified. Verdicchio and Lugana had been differentiated on the basis of 19 free and glycosidically bound compounds belonging to the chemical classes of terpenes, benzenoids, higher alcohols, C6 alcohols and norisoprenoids. Samples were assessed by means of a sorting task sensory analysis, resulting in two clusters formed. These results suggested the existence of 2 product types with specific sensory spaces that can be related, to a good extend, to Verdicchio and Lugana wines. Cluster 1 was composed of six wines, 4 of which were Lugana, while Cluster 2 was formed of 7 wines, 5 of which were Verdicchio. The first cluster was described as “fruity”, and “fresh/minty”, while the second as “fermentative” and “spicy”. An attempt was made to relate analytical and sensory data, the results showed that damascenone and the sum of 3 of esters the ethyl hexanoate, ethyl octanoate and isoamyl acetate, was characterizing Cluster 1. These results highlighted the primary importance of geographical origin to the volatile composition and perceived aroma of Lugana and Verdicchio wines.

Molecules ◽  
2020 ◽  
Vol 25 (2) ◽  
pp. 245 ◽  
Author(s):  
Małgorzata A. Majcher ◽  
Magdalena Scheibe ◽  
Henryk H. Jeleń

The volatiles of cape gooseberry fruit (Physalis peruviana L.) were isolated by solvent-assisted flavor evaporation (SAFE), odor active compounds identified by gas chromatography–olfactometry (GC-O) and gas chromatography–mass spectrometry (GC-MS). Quantitation of compounds was performed by headspace—solid phase microextraction (HS-SPME) for all but one. Aroma extract dilution analysis (AEDA) revealed 18 odor active regions, with the highest flavor dilution values (FD = 512) noted for ethyl butanoate and 4-hydroxy-2,5-dimethylfuran-3-one (furaneol). Odor activity values were determined for all 18 compounds and the highest was noted for ethyl butanoate (OAV = 504), followed by linalool, (E)-non-2-enal, (2E,6Z)-nona-2,6-dienal, hexanal, ethyl octanoate, ethyl hexanoate, butane-2,3-dione, and 2-methylpropanal. The main groups of odor active compounds in Physalis peruviana L. were esters and aldehydes. A recombinant experiment confirmed the identification and quantitative results.


Molecules ◽  
2020 ◽  
Vol 25 (23) ◽  
pp. 5705
Author(s):  
Christian Philipp ◽  
Phillip Eder ◽  
Sezer Sari ◽  
Nizakat Hussain ◽  
Elsa Patzl-Fischerleitner ◽  
...  

Pinot blanc is a grape variety found in all wine-growing regions of Austria. However, there are only few scientific studies which deal with the aroma of wines of this variety. In the course of this project, the relationship between aroma profile and the typicity of Austrian Pinot blanc wines was studied. The aim was to describe the typicity and to find significant differences in aroma profiles and aroma descriptors of typical and atypical Pinot blanc wines. Since the typicity of a jointly anchored prototype is embedded in the memory, typical attributes for Austrian Pinot blanc wines were first identified by consumers and experts or producers. According to this, 131 flawless commercial Austrian wines of the variety Pinot blanc of the vintages 2015 to 2017 were analysed for more than 100 volatile substances. The wines of the vintages 2015 to 2017 were judged by a panel of producers and experts for their typicity; furthermore, the wines of the vintage 2017 were also evaluated by a consumer panel and a trained descriptive panel. Subsequently, typical and atypical wines were described by the trained descriptive panel. It was found that Pinot blanc wines typical of Austria showed significantly higher concentrations of the ester compounds ethyl hexanoate, ethyl butanoate, ethyl octanoate, ethyl decanoate, methyl hexanoate, hexyl acetate and isoamyl acetate, while atypical wines had higher concentrations of free monoterpenes such as linalool, trans-linalool oxide, nerol oxide, nerol and alpha-terpineol. The sensory description of typical Pinot blanc wines was significantly more pronounced for the attribute “yellow pome fruit”, and tended to be more pronounced for the attributes “green pome fruit”, “pear”, “walnut”, “pineapple”, “banana” and “vanilla”, while the atypical Pinot blanc wines were described more by the attribute “citrus”. These findings could help to ensure that, through targeted measures, Austrian Pinot blanc wines become even more typical and distinguish themselves from other origins such as Germany or South Tyrol through a clear concept of typicity.


Author(s):  
Božena Průšová ◽  
Jiří Sochor ◽  
Mojmír Baroň ◽  
Michal Kumšta

In this study effects of commercial yeast preparations on the aromatic profile of Sauvignon Blanc varietal wine were investigated. Grape juice was divided to 7 experimental variants and fermented spontaneously and using 6 commercial strains of Saccharomyces cerevisiae. In final wine samples, essential analytical parameters and selected aromatic compounds were analysed. The highest content of esters was found out in samples fermented by spontaneous micro‑flora; in this case, concentrations of ethyl hexanoate, ethyl octanoate and ethyl decanoate were 682 µg/L, 735 µg/L and 162 µg/L, respectively. The highest content of acetates was recorded in samples fermented by yeast Vulcaferm Sauvignon; concentrations of isoamyl acetate, 2‑phenylethyl acetate and isobutyl acetate were 7.8 mg/L, 244 µg/L and 137 µg/L, respectively. Yeast strain suitable for cold fermentation (Oenoferm Fredo) produced high amounts of ethyl esters and acetates. As far as the sensory evaluation was concerned, the best rating got the sample fermented by these yeasts; it showed a high degree of smell and flavour cleanness as well as a very good overall harmony.


2014 ◽  
Vol 10 (4) ◽  
pp. 809-820 ◽  
Author(s):  
Yuping Zhao ◽  
Tiantian Tian ◽  
Jiming Li ◽  
Baochun Zhang ◽  
Ying Yu ◽  
...  

Abstract The present study investigated the variations in main flavor compounds of a Chinese brandy during the second distillation process using headspace–solid-phase microextraction coupled with gas chromatography-mass spectrometry. A total of 97 volatile compounds involving esters, alcohols, aldehydes, ketones, furans, benzene derivatives and terpenes were quantified, and 28 components were identified as key ingredients. By monitoring the second distillation process, it was found that most ethyl esters (ethyl hexanoate, ethyl octanoate, etc.), alcohols (3-methylbutanol, etc.), terpenes (linalool, etc.), acetaldehyde and ionone all had higher values at the beginning of the distillation, but declined gradually or sharply along with the distillation process. However, two esters (ethyl lactate and diethyl succinate), acids (acetic acid, hexanoic acid), benzene derivatives (2-phenylethanol, etc.) and furan (furfural) showed lower levels when the distillation was just started, and gradually increased, accumulating as a large quantity at the end of the distillation.


Molecules ◽  
2021 ◽  
Vol 26 (11) ◽  
pp. 3172
Author(s):  
Mengqi Ling ◽  
Yu Zhou ◽  
Yibin Lan ◽  
Chifang Cheng ◽  
Guangfeng Wu ◽  
...  

Sensory interactions exist between 3-alkyl-2-methoxypyrazines and various volatiles in wines. In this study, the binary blending of Cabernet Franc wines containing high levels of MPs and three monovarietal red wines with two proportions was conducted after fermentation. Volatiles were detected by gas chromatography-mass spectrometry (GC-MS), and wines were evaluated by quantitative descriptive analysis at three-month intervals during six-month bottle aging. Results showed blending wines exhibited lower intensity of ‘green pepper’, especially CFC samples blended by Cabernet Sauvignon wines with an even higher concentration of 3-isobutyl-2-methoxypyrazine (IBMP). Based on Pearson correlation analysis, acetates could promote the expression of ‘tropical fruity’ and suppress ‘green pepper’ caused by IBMP. Positive correlation was observed among ‘green pepper’, ‘herbaceous’, and ‘berry’. The concentration balance between IBMP and other volatiles associated with ‘green pepper’ and fruity notes was further investigated through sensory experiments in aroma reconstitution. Higher pleasant fruity perception was obtained with the concentration proportion of 1-hexanol (1000 μg/L), isoamyl acetate (550 μg/L), ethyl hexanoate (400 μg/L), and ethyl octanoate (900 μg/L) as in CFC samples. Blending wines with proper concentration of those volatiles would be efficient to weaken ‘green pepper’ and highlight fruity notes, which provided scientific theory on sensory modification of IBMP through blending technique.


2020 ◽  
Vol 10 (19) ◽  
pp. 6722
Author(s):  
Alice Agarbati ◽  
Laura Canonico ◽  
Francesca Comitini ◽  
Maurizio Ciani

The application of yeast strains that are low producers of sulfur compounds is actually required by winemakers for the production of organic wine. This purpose could be satisfied using a native Saccharomyces cerevisiae strain improved for oenological aptitudes. Moreover, to improve the aromatic complexity of wines, sequential fermentations carried out with S. cerevisiae/non-Saccharomyces yeast is widely used. For these reasons, in the present work an improved native S. cerevisiae low producer of sulfite and sulfide compounds was evaluated in pure and in sequential fermentation with a selected Torulaspora delbrueckii. Additionally, the influence of grape juices coming from three different vintages under winery conditions was evaluated. In pure fermentation, improved native S. cerevisiae strain exhibited a behavior related to vintage, highlighting that the composition of grape juice affects the fermentation process. In particular, an increase in ethyl octanoate (vintage 2017) and phenyl ethyl acetate (vintage 2018) was detected. Moreover, isoamyl acetate was highly consistent and could be a distinctive aroma of the strain. The sequential fermentation T. delbrueckii/S. cerevisiae determined an increase in aroma compounds such as phenyl ethyl acetate and ethyl hexanoate. In this way, it was possible to produce Verdicchio wine with reduced sulfites and characterized by a peculiar aromatic taste.


2020 ◽  
Vol 8 (9) ◽  
pp. 1270
Author(s):  
Liangjing Lin ◽  
Jinyuan Wu ◽  
Xi Chen ◽  
Libiao Huang ◽  
Xiaoyong Zhang ◽  
...  

In this paper, the volatile flavour constituents and the bacterial diversity in characteristic Chinese fermented sour soup were analysed, and the dynamics of bacteria associated with the odour were characterized. The bacterial diversity of sour soup was studied by high-throughput sequencing. A total of 10 phyla and 89 genera were detected. Firmicutes was the dominant phylum of sour soup, accounting for 87.14–98.57%. The genus structure of normal sour soup was relatively simple, and Lactobacillus (78.05–90.26%) was the dominant genus. In addition to Lactobacillus, the foul-smelling sour soup contained more Pediococcus spp., Caproiciproducens spp., and Clostridium-sensu-stricto12 spp. (relative abundance >1%) than the normal sour soup. A total of 51 aroma compounds were detected by gas chromatography-mass spectrometry(GC-IMS), including 25 esters, 8 terpenes, 8 alcohols, 3 sulfur compounds, 2 acids, 2 ketones, 1 pyrazine, 1 monoterpene and 1 aldehyde. According to the relative odour active value (ROAV) calculation, 51 important flavour-contributing substances and 7 flavour-coordinating substances were determined. The esters with the highest relative percentages and ROAV values provided the pleasant flavour of the sour soup. In the foul-smelling sour soup, the ROAV values of 1,8-cineole, isobutyl acetate, ethyl butanoate, ethyl octanoate-M, and ethyl hexanoate-M decreased, while those of diallyl disulfide-M and diallyl disulfide-D, which were probably responsible for the foul flavour, increased. Through Pearson correlation analysis, the odour production of the foul-smelling soup was determined to be related to Pediococcus spp., Caproiciproducens spp., Clostridiumsensu_stricto_12 spp., Oscillibacter spp., Bacteroides spp., Fibaculaceae_unclassified spp., Acinetobacter spp. and Halomonas spp.


2021 ◽  
Vol 15 (1) ◽  
pp. 43
Author(s):  
Raja Zubaidah Raja Sabaradin ◽  
Rozita Osman

The car paint system consisted of four different layers; namely cathodic electrodeposition (CED), primer, the basecoat, and clear coat. Each of these layers may offer valuable information in an analysis of car paint. However, the recovery of a small amount of car paint from a crime scene may not consist of all four layers. Thus, this study is conducted to evaluate the evidence value of car primer in the presence of basecoat and absence of clear coat. In this study, 80 car paint samples, consisting of eight different red basecoats and ten types of primers were analyzed using Py-GC-MS to evaluate the contribution of the primer layer in the analysis of car paint sample. The chromatographic dataset obtained was subjected to chemometric techniques namely principal component analysis (PCA) and cluster analysis (CA). 22 principal components were rendered from PCA with a total variance of 81.23%. CA’s three clusters are cluster 1 and 3 which was based on the shades of red basecoat while cluster 2 was based on the type of primer. This observation showed that the car primer might have a significant contribution to the analysis of car paint using Py-GC-MS. Keywords: Car primer, car paint analysis, Py-GC-MS, chemometric


2010 ◽  
Vol 93 (6) ◽  
pp. 1916-1922 ◽  
Author(s):  
Cecilia Sáenz ◽  
Trinidad Cedráenzn ◽  
Susana Cabredo

Abstract Wine is a complex matrix in which aroma compounds play an important role in the characterization of the flavor pattern of a given wine. Twelve volatile compounds were determined in 244 samples of Spanish red wines from different denominations of origin: Rioja, Navarra, Valdepeas, La Mancha, and Cariena. The samples were analyzed by GC using headspace solid-phase microextraction. The concentration (mg/mL) intervals obtained were 3-methyl-butyl acetate (3.9 to 116), 3-methyl-1-butanol (93 to 724), ethyl hexanoate (0.8 to 39), 1-hexanol (0.3 to 6.7), ethyl octanoate (1.4 to 41), diethyl succinate (0.2 to 13), 2-phenyl ethyl acetate (0 to 5.3), hexanoic acid (0 to 8.3), geraniol (0 to 3.0), 2-phenylethanol (1.5 to 56), octanoic acid (0 to 20), and decanoic acid (0 to 3.3). Wines were classified by multivariate statistical methods: principal component analysis, and lineal discriminant analysis. A correct differentiation among wines according to their origin was obtained by lineal discriminant analysis.


Foods ◽  
2020 ◽  
Vol 9 (10) ◽  
pp. 1496
Author(s):  
Lorenzo Guerrini ◽  
Piernicola Masella ◽  
Giulia Angeloni ◽  
Andrea Sacconi ◽  
Luca Calamai ◽  
...  

The present study tested the effect of a slight increase in pressure (from 0 to 1 bar) during the fermentation on the wine aroma profile. Fermentations were carried out with a commercial dry yeast on Sangiovese juice in the absence of berry skins. The wine samples fermented under slight overpressure conditions were found to be significantly different from the control samples produced at atmospheric pressure in relation to several chemical compounds. Concentrations of many esters (i.e., isoamyl acetate, ethyl acetate, ethyl hexanoate, hexyl acetate, ethyl dodecanoate, and ethyl tetradecanoate), and acids (i.e., hexanoic acid, octanoic acid, and decanoic acid) increased, while concentrations of two acids (i.e., isobutyric and isovaleric acid) decreased. These differences, notably the higher concentration of esters, are usually associated with a more intense fruity attribute. Triangular sensory tests revealed that the significant chemical differences were also perceivable; hence, introducing a slight pressure increase during the alcoholic fermentation could be a useful tool in managing the aroma profile of wine.


Sign in / Sign up

Export Citation Format

Share Document