scholarly journals Occurrence of Cis-11,12-Methylene-Hexadecanoic Acid in the Red Alga Solieria pacifica (Yamada) Yoshida

Molecules ◽  
2021 ◽  
Vol 26 (8) ◽  
pp. 2286
Author(s):  
Gwang-Woo Kim ◽  
Jae-Man Sim ◽  
Yutaka Itabashi ◽  
Min-Jeong Jung ◽  
Joon-Young Jun

Fatty acids in marine algae have attracted the attention of natural chemists because of their biological activity. The fatty acid compositions of the Solieriaceae families (Rhodophyceae, Gaigartinales) provide interesting information that unusual cyclic fatty acids have been occasionally found. A survey was conducted to profile the characteristic fatty acid composition of the red alga Solieria pacifica (Yamada) Yoshida using gas chromatography-mass spectrometry (GC-MS), infrared spectroscopy (IR), and proton nuclear magnetic resonance spectroscopy (1H-NMR). In S. pacifica, two cyclopentyl fatty acids, 11-cyclopentylundecanoic acid (7.0%), and 13-cyclopentyltridecanoic acid (4.9%), and a cyclopropane fatty acid, cis-11,12-methylene-hexadecanoic acid (7.9%) contributed significantly to the overall fatty acid profile. In particular, this cyclopropane fatty acid has been primarily found in bacteria, rumen microorganisms or foods of animal origin, and has not previously been found in any other algae. In addition, this alga contains a significant amount of the monoenoic acid cis-11-hexadecenoic acid (9.0%). Therefore, cis-11,12-methylene-hexadecanoic acid in S. pacifica was likely produced by methylene addition to cis-11-hexadecenoic acid.

1994 ◽  
Vol 40 (10) ◽  
pp. 844-850 ◽  
Author(s):  
Peter Kämpfer ◽  
Klaus Blasczyk ◽  
Georg Auling

A chemotaxonomic study was carried out on representative strains of 13 Aeromonas genomic species. Quinone, polyamine, and fatty acid patterns were found to be very useful for an improved characterization of the genus and an improved differentiation from members of the families Enterobacteriaceae and Vibrionaceae. The Q-8-benzoquinone was the predominant ubiquinone, and putrescine and diaminopropane were the major poly amines of the genus. The fatty acid patterns of 181 strains, all characterized by DNA–DNA hybridization, showed a great homogeneity within the genus, with major amounts of hexadecanoic acid (16:0), hexadecenoic acid (16:1), and octadecenoic acid (18:1), and minor amounts of the hydroxylated fatty acids (3-OH 13:0, 2-OH 14:0, 3-OH 14:0) in addition to some iso and anteiso branched fatty acids (i-13:0, i-17:1, i-17:0, and a-17:0). Although some differences in fatty acid profiles between the genomic species could be observed, a clearcut differentiation of all species was not possible.Key words: Aeromonas, polyamines, quinones, fatty acids, differentiation.


1977 ◽  
Vol 89 (3) ◽  
pp. 575-582 ◽  
Author(s):  
W. M. F. Leat

SummaryAberdeen Angus and Friesian cattle were reared from 4 months of age to slaughter weight at 18–24 months on either high-barley or high-hay diets. Samples of subcutaneous fat were taken by biopsy at 3 monthly intervals, and the degree of fatness of each animal was estimated ultrasonically prior to slaughter, and by visual inspection of the carcasses.The barley-fed animals gained weight more rapidly, and fattened more quickly than the hay-fed animals with the Angus being fatter than the Friesian at the same age. The percentage stearic acid (C18:0) in subcutaneous fat decreased with age and was replaced by octadecenoic acid (C18:l) and hexadecenoic acid (C16:l), these changes being more rapid in barley-fed than in hay-fed animals. At the same degree of fatness the depot fats of the Friesians were more unsaturated than those of the Angus, and in both breeds the fatter the animal the more unsaturated was its depot fat.In the hay-fed cattle the percentage C16:0 in subcutaneous fat increased during the last half of the experiment and at slaughter the percentage C16:0 was significantly higher, and C18:l significantly lower, in all depot fats compared with those of the barley-fed animals.It is concluded that the fatty acid composition of bovine depot fats is modulated by the degree of fattening, and can be affected by diet.


2005 ◽  
Vol 71 (4) ◽  
pp. 1915-1922 ◽  
Author(s):  
Claus Härtig ◽  
Norbert Loffhagen ◽  
Hauke Harms

ABSTRACT Fatty acid compositions in growing and resting cells of several strains of Pseudomonas putida (P8, NCTC 10936, and KT 2440) were studied, with a focus on alterations of the saturation degree, cis-trans isomerization, and cyclopropane formation. The fatty acid compositions of the strains were very similar under comparable growth conditions, but surprisingly, and contrary to earlier reports, trans fatty acids were not found in either exponentially growing cells or stationary-phase cells. During the transition from growth to the starvation state, cyclopropane fatty acids were preferentially formed, an increase in the saturation degree of fatty acids was observed, and larger amounts of hydroxy fatty acids were detected. A lowered saturation degree and concomitant higher membrane fluidity seemed to be optimal for substrate uptake and growth. The incubation of cells under nongrowth conditions rapidly led to the formation of trans fatty acids. We show that harvesting and sample preparation for analysis could provoke the enzyme-catalyzed formation of trans fatty acids. Freeze-thawing of resting cells and increased temperatures accelerated the formation of trans fatty acids. We demonstrate that cis-trans isomerization only occurred in cells that were subjected to an abrupt disturbance without having the possibility of adapting to the changed conditions by the de novo synthesis of fatty acids. The cis-trans isomerization reaction was in competition with the cis-to-cyclopropane fatty acid conversion. The potential for the formation of trans fatty acids depended on the cyclopropane content that was already present.


2001 ◽  
Vol 67 (10) ◽  
pp. 4796-4804 ◽  
Author(s):  
Maria Alexandrino ◽  
Claudia Knief ◽  
André Lipski

ABSTRACT Deuterated styrene ([2H8]styrene) was used as a tracer in combination with phospholipid fatty acid (PLFA) analysis for characterization of styrene-degrading microbial populations of biofilters used for treatment of waste gases. Deuterated fatty acids were detected and quantified by gas chromatography-mass spectrometry. The method was evaluated with pure cultures of styrene-degrading bacteria and defined mixed cultures of styrene degraders and non-styrene-degrading organisms. Incubation of styrene degraders for 3 days with [2H8]styrene led to fatty acids consisting of up to 90% deuterated molecules. Mixed-culture experiments showed that specific labeling of styrene-degrading strains and only weak labeling of fatty acids of non-styrene-degrading organisms occurred after incubation with [2H8]styrene for up to 7 days. Analysis of actively degrading filter material from an experimental biofilter and a full-scale biofilter by this method showed that there were differences in the patterns of labeled fatty acids. For the experimental biofilter the fatty acids with largest amounts of labeled molecules were palmitic acid (16:0), 9,10-methylenehexadecanoic acid (17:0 cyclo9-10), and vaccenic acid (18:1 cis11). These lipid markers indicated that styrene was degraded by organisms with aPseudomonas-like fatty acid profile. In contrast, the most intensively labeled fatty acids of the full-scale biofilter sample were palmitic acid and cis-11-hexadecenoic acid (16:1cis11), indicating that an unknown styrene-degrading taxon was present. Iso-, anteiso-, and 10-methyl-branched fatty acids showed no or weak labeling. Therefore, we found no indication that styrene was degraded by organisms with methyl-branched fatty fatty acids, such as Xanthomonas, Bacillus,Streptomyces, or Gordonia spp.


Biomedicines ◽  
2020 ◽  
Vol 8 (11) ◽  
pp. 480
Author(s):  
Alma M. Astudillo ◽  
Clara Meana ◽  
Miguel A. Bermúdez ◽  
Alfonso Pérez-Encabo ◽  
María A. Balboa ◽  
...  

Positional isomers of hexadecenoic acid are considered as fatty acids with anti-inflammatory properties. The best known of them, palmitoleic acid (cis-9-hexadecenoic acid, 16:1n-7), has been identified as a lipokine with important beneficial actions in metabolic diseases. Hypogeic acid (cis-7-hexadecenoic acid, 16:1n-9) has been regarded as a possible biomarker of foamy cell formation during atherosclerosis. Notwithstanding the importance of these isomers as possible regulators of inflammatory responses, very little is known about the regulation of their levels and distribution and mobilization among the different lipid pools within the cell. In this work, we describe that the bulk of hexadecenoic fatty acids found in mouse peritoneal macrophages is esterified in a unique phosphatidylcholine species, which contains palmitic acid at the sn-1 position, and hexadecenoic acid at the sn-2 position. This species markedly decreases when the macrophages are activated with inflammatory stimuli, in parallel with net mobilization of free hexadecenoic acid. Using pharmacological inhibitors and specific gene-silencing approaches, we demonstrate that hexadecenoic acids are selectively released by calcium-independent group VIA phospholipase A2 under activation conditions. While most of the released hexadecenoic acid accumulates in free fatty acid form, a significant part is also transferred to other phospholipids to form hexadecenoate-containing inositol phospholipids, which are known to possess growth-factor-like-properties, and are also used to form fatty acid esters of hydroxy fatty acids, compounds with known anti-diabetic and anti-inflammatory properties. Collectively, these data unveil new pathways and mechanisms for the utilization of palmitoleic acid and its isomers during inflammatory conditions, and raise the intriguing possibility that part of the anti-inflammatory activity of these fatty acids may be due to conversion to other lipid mediators.


2016 ◽  
Vol 2016 ◽  
pp. 1-9 ◽  
Author(s):  
Regiane Kawasaki ◽  
Rafael A. Baraúna ◽  
Artur Silva ◽  
Marta S. P. Carepo ◽  
Rui Oliveira ◽  
...  

Exiguobacterium antarcticumB7 is extremophile Gram-positive bacteria able to survive in cold environments. A key factor to understanding cold adaptation processes is related to the modification of fatty acids composing the cell membranes of psychrotrophic bacteria. In our study we show thein silicoreconstruction of the fatty acid biosynthesis pathway ofE. antarcticumB7. To build the stoichiometric model, a semiautomatic procedure was applied, which integrates genome information using KEGG and RAST/SEED. Constraint-based methods, namely, Flux Balance Analysis (FBA) and elementary modes (EM), were applied. FBA was implemented in the sense of hexadecenoic acid production maximization. To evaluate the influence of the gene expression in the fluxome analysis, FBA was also calculated using thelog2⁡FCvalues obtained in the transcriptome analysis at 0°C and 37°C. The fatty acid biosynthesis pathway showed a total of 13 elementary flux modes, four of which showed routes for the production of hexadecenoic acid. The reconstructed pathway demonstrated the capacity ofE. antarcticumB7 tode novoproduce fatty acid molecules. Under the influence of the transcriptome, the fluxome was altered, promoting the production of short-chain fatty acids. The calculated models contribute to better understanding of the bacterial adaptation at cold environments.


2021 ◽  
Vol 854 (1) ◽  
pp. 012071
Author(s):  
Dejan Peric ◽  
Ivana Brankovic Lazic ◽  
Srdjan Pantic ◽  
Milan Z. Baltic ◽  
Jelena Janjic ◽  
...  

Abstract In monogastric animals, tissue fatty acid profile directly reflects the fatty acid profile present in the animal’s diet. Inadequate ratio of fatty acids in food can lead to negative effects on human health. Conjugated linoleic acid (CLA) is a group of isomers of linoleic acid (C18:2), and its most interesting role is in the prevention of tumors, atherosclerosis and diabetes. CLA is found in ruminant meat and milk, and since pigs and poultry do not have the ability to synthesize CLA, it is possible to add them to animal feed with biotechnological solutions. The scientific public imposes modern parameters for determining the nutritional value of fatty acids, in which the AI – index of atherogenicity, TI – index of thrombogenicity and H/H - hypocholesterolemic/hypercholesterolemic ratio are distinguished. The aim of this study was to determine the effect CLA addition to the diet of non-ruminants on the lipid indices of certain categories of meat, from the aspect of consumer health needs. A significant influence of the correction of feed’s fatty acid composition on the lipid indices in food of animal origin was determined.


2018 ◽  
Vol 3 (3) ◽  
pp. 12-26
Author(s):  
Marina I. Baburina ◽  
Natal’ya L. Vostrikova ◽  
Andrew N. Ivankin ◽  
Aleksandr N. Zenkin

The aspects of biochemical transformation of natural lipids of vegetable, fish, and animal origin are considered on the model of biotechnical aspects of triglyceride transformation into products of various purpose. The indicators of biological efficacy of fats are presented regarding the systematization by groups of polyunsaturated, monounsaturated and saturated fatty acids. Some features of simulation of natural processes of hydrolytic fat degradation into energy-intensive products are discussed. At the same time, aspects of fat intake and their biochemical transformation in food systems by human enzymes, and biochemical transformation of lipids in vitro in the presence of commercial enzyme preparations were studied. The aspects of free fatty acid transformation into esters are considered for justifying their use.


Sign in / Sign up

Export Citation Format

Share Document