scholarly journals The Molecular Basis of Different Approaches for the Study of Cancer Stem Cells and the Advantages and Disadvantages of a Three-Dimensional Culture

Molecules ◽  
2021 ◽  
Vol 26 (9) ◽  
pp. 2615
Author(s):  
Danila Cianciosi ◽  
Johura Ansary ◽  
Tamara Y. Forbes-Hernandez ◽  
Lucia Regolo ◽  
Denise Quinzi ◽  
...  

Cancer stem cells (CSCs) are a rare tumor subpopulation with high differentiation, proliferative and tumorigenic potential compared to the remaining tumor population. CSCs were first discovered by Bonnet and Dick in 1997 in acute myeloid leukemia. The identification and isolation of these cells in this pioneering study were carried out through the flow cytometry, exploiting the presence of specific cell surface molecular markers (CD34+/CD38−). In the following years, different strategies and projects have been developed for the study of CSCs, which are basically divided into surface markers assays and functional assays; some of these techniques also allow working with a cellular model that better mimics the tumor architecture. The purpose of this mini review is to summarize and briefly describe all the current methods used for the identification, isolation and enrichment of CSCs, describing, where possible, the molecular basis, the advantages and disadvantages of each technique with a particular focus on those that offer a three-dimensional culture.

2020 ◽  
Vol 11 ◽  
pp. 204173142093340 ◽  
Author(s):  
Chengye Zhang ◽  
Zhaoting Yang ◽  
Da-Long Dong ◽  
Tae-Su Jang ◽  
Jonathan C. Knowles ◽  
...  

Cancer stem cells have been shown to be important in tumorigenesis processes, such as tumor growth, metastasis, and recurrence. As such, many three-dimensional models have been developed to establish an ex vivo microenvironment that cancer stem cells experience under in vivo conditions. Cancer stem cells propagating in three-dimensional culture systems show physiologically related signaling pathway profiles, gene expression, cell–matrix and cell–cell interactions, and drug resistance that reflect at least some of the tumor properties seen in vivo. Herein, we discussed the presently available Cancer stem cell three-dimensional culture models that use biomaterials and engineering tools and the biological implications of these models compared to the conventional ones.


2011 ◽  
Vol 8 (60) ◽  
pp. 998-1010 ◽  
Author(s):  
Jae Ho Lee ◽  
Hye-Sun Yu ◽  
Gil-Su Lee ◽  
Aeri Ji ◽  
Jung Keun Hyun ◽  
...  

Three-dimensional gel matrices provide specialized microenvironments that mimic native tissues and enable stem cells to grow and differentiate into specific cell types. Here, we show that collagen three-dimensional gel matrices prepared in combination with adhesive proteins, such as fibronectin (FN) and laminin (LN), provide significant cues to the differentiation into neuronal lineage of mesenchymal stem cells (MSCs) derived from rat bone marrow. When cultured within either a three-dimensional collagen gel alone or one containing either FN or LN, and free of nerve growth factor (NGF), the MSCs showed the development of numerous neurite outgrowths. These were, however, not readily observed in two-dimensional culture without the use of NGF. Immunofluorescence staining, western blot and fluorescence-activated cell sorting analyses demonstrated that a large population of cells was positive for NeuN and glial fibrillary acidic protein, which are specific to neuronal cells, when cultured in the three-dimensional collagen gel. The dependence of the neuronal differentiation of MSCs on the adhesive proteins containing three-dimensional gel matrices is considered to be closely related to focal adhesion kinase (FAK) activation through integrin receptor binding, as revealed by an experiment showing no neuronal outgrowth in the FAK-knockdown cells and stimulation of integrin β1 gene. The results provided herein suggest the potential role of three-dimensional collagen-based gel matrices combined with adhesive proteins in the neuronal differentiation of MSCs, even without the use of chemical differentiation factors. Furthermore, these findings suggest that three-dimensional gel matrices might be useful as nerve-regenerative scaffolds.


Stem Cells ◽  
2006 ◽  
Vol 24 (2) ◽  
pp. 284-291 ◽  
Author(s):  
Nathaniel S. Hwang ◽  
Myoung Sook Kim ◽  
Somponnat Sampattavanich ◽  
Jin Hyen Baek ◽  
Zijun Zhang ◽  
...  

2010 ◽  
Vol 2010 ◽  
pp. 1-7 ◽  
Author(s):  
Ronald Pethig ◽  
Anoop Menachery ◽  
Steve Pells ◽  
Paul De Sousa

Dielectrophoresis can discriminate distinct cellular identities in heterogeneous populations, and monitor cell state changes associated with activation and clonal expansion, apoptosis, and necrosis, without the need for biochemical labels. Demonstrated capabilities include the enrichment of haematopoetic stem cells from bone marrow and peripheral blood, and adult stem cells from adipose tissue. Recent research suggests that this technique can predict the ultimate fate of neural stem cells after differentiationbeforethe appearance of specific cell-surface proteins. This review summarises the properties of cells that contribute to their dielectrophoretic behaviour, and their relevance to stem cell research and translational applications.


2021 ◽  
Vol 22 ◽  
Author(s):  
Soheila Montazersaheb ◽  
Ezzatollah Fathi ◽  
Ayoub Mamandi ◽  
Raheleh Farahzadi ◽  
Hamid Reza Heidari

: Tumors are made up of different types of cancer cells that contribute to tumor heterogeneity. Among these cells, cancer stem cells (CSCs) have a significant role in the onset of cancer and development. Like other stem cells, CSCs are characterized by the capacity for differentiation and self-renewal. A specific population of CSCs is constituted by mesenchymal stem cells (MSCs) that differentiate into mesoderm-specific cells. The pro-or anti-tumorigenic potential of MSCs on the proliferation and development of tumor cells has been reported as contradictory results. Also, tumor progression is specified by the corresponding tumor cells like the tumor microenvironment. The tumor microenvironment consists of a network of reciprocal cell types such as endothelial cells, immune cells, MSCs, and fibroblasts as well as growth factors, chemokines, and cytokines. In this review, recent findings related to the tumor microenvironment and associated cell populations, homing of MSCs to tumor sites, and interaction of MSCs with tumor cells will be discussed.


2017 ◽  
Vol 41 (12) ◽  
pp. 1316-1324 ◽  
Author(s):  
Ji Eun Park ◽  
Min Hee Park ◽  
Min Seong Kim ◽  
Yeo Reum Park ◽  
Jung Im Yun ◽  
...  

PLoS ONE ◽  
2018 ◽  
Vol 13 (11) ◽  
pp. e0206811 ◽  
Author(s):  
Jing Li ◽  
Tong Chen ◽  
Xiahe Huang ◽  
Yunshan Zhao ◽  
Bin Wang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document