Mesenchymal Stem Cells and Cancer Stem Cells: An Overview of Tumor-Mesenchymal Stem Cell Interaction for therapeutic interventions

2021 ◽  
Vol 22 ◽  
Author(s):  
Soheila Montazersaheb ◽  
Ezzatollah Fathi ◽  
Ayoub Mamandi ◽  
Raheleh Farahzadi ◽  
Hamid Reza Heidari

: Tumors are made up of different types of cancer cells that contribute to tumor heterogeneity. Among these cells, cancer stem cells (CSCs) have a significant role in the onset of cancer and development. Like other stem cells, CSCs are characterized by the capacity for differentiation and self-renewal. A specific population of CSCs is constituted by mesenchymal stem cells (MSCs) that differentiate into mesoderm-specific cells. The pro-or anti-tumorigenic potential of MSCs on the proliferation and development of tumor cells has been reported as contradictory results. Also, tumor progression is specified by the corresponding tumor cells like the tumor microenvironment. The tumor microenvironment consists of a network of reciprocal cell types such as endothelial cells, immune cells, MSCs, and fibroblasts as well as growth factors, chemokines, and cytokines. In this review, recent findings related to the tumor microenvironment and associated cell populations, homing of MSCs to tumor sites, and interaction of MSCs with tumor cells will be discussed.

2020 ◽  
Vol 11 ◽  
Author(s):  
Yueyun Pan ◽  
Yinda Yu ◽  
Xiaojian Wang ◽  
Ting Zhang

Tumor-associated macrophages (TAMs) represent one of the main tumor-infiltrating immune cell types and are generally categorized into either of two functionally contrasting subtypes, namely classical activated M1 macrophages and alternatively activated M2 macrophages. The former typically exerts anti-tumor functions, including directly mediate cytotoxicity and antibody-dependent cell-mediated cytotoxicity (ADCC) to kill tumor cells; the latter can promote the occurrence and metastasis of tumor cells, inhibit T cell-mediated anti-tumor immune response, promote tumor angiogenesis, and lead to tumor progression. Both M1 and M2 macrophages have high degree of plasticity and thus can be converted into each other upon tumor microenvironment changes or therapeutic interventions. As the relationship between TAMs and malignant tumors becoming clearer, TAMs have become a promising target for developing new cancer treatment. In this review, we summarize the origin and types of TAMs, TAMs interaction with tumors and tumor microenvironment, and up-to-date treatment strategies targeting TAMs.


Neurosurgery ◽  
2012 ◽  
Vol 71 (1) ◽  
pp. 117-125 ◽  
Author(s):  
Wesley Hsu ◽  
Ahmed Mohyeldin ◽  
Sagar R. Shah ◽  
Ziya L. Gokaslan ◽  
Alfredo Quinones-Hinojosa

Abstract The management of spinal column tumors continues to be a challenge for clinicians. The mechanisms of tumor recurrence after surgical intervention as well as resistance to radiation and chemotherapy continue to be elucidated. Furthermore, the pathophysiology of metastatic spread remains an area of active investigation. There is a growing body of evidence pointing to the existence of a subset of tumor cells with high tumorigenic potential in many spine cancers that exhibit characteristics similar to those of stem cells. The ability to self-renew and differentiate into multiple lineages is the hallmark of stem cells, and tumor cells that exhibit these characteristics have been described as cancer stem cells (CSCs). The mechanisms that allow nonmalignant stem cells to promote normal developmental programming by way of enhanced proliferation, promotion of angiogenesis, and increased motility may be used by CSCs to fuel carcinogenesis. The purpose of this review is to discuss what is known about the role of CSCs in tumors of the osseous spine. First, this article reviews the fundamental concepts critical to understanding the role of CSCs with respect to chemoresistance, radioresistance, and metastatic disease. This discussion is followed by a review of what is known about the role of CSCs in the most common primary tumors of the osseous spine.


Biomedicines ◽  
2021 ◽  
Vol 9 (11) ◽  
pp. 1572
Author(s):  
Jinok Noh ◽  
Jinyeong Yu ◽  
Wootak Kim ◽  
Aran Park ◽  
Ki-Sook Park

The prostate tumor microenvironment plays important roles in the metastasis and hormone-insensitive re-growth of tumor cells. Bone marrow-derived mesenchymal stem cells (BM-MSCs) are recruited into prostate tumors to facilitate tumor microenvironment formation. However, the specific intrinsic molecules mediating BM-MSCs’ migration to prostate tumors are unknown. BM-MSCs’ migration toward a conditioned medium (CM) of hormone-insensitive (PC3 and DU145) or hormone-sensitive (LNCaP) prostate tumor cells was investigated using a three-dimensional cell migration assay and a transwell migration assay. PC3 and DU145 expressed transforming growth factor-β (TGF-β), but LNCaP did not. Regardless of TGF-β expression, BM-MSCs migrated toward the CM of PC3, DU145, or LNCaP. The CM of PC3 or DU145 expressing TGF-β increased the phosphorylation of Smad2/3 in BM-MSCs. Inactivation of TGF-β signaling in BM-MSCs using TGF-β type 1 receptor (TGFBR1) inhibitors, SB505124, or SB431542 did not allow BM-MSCs to migrate toward the CM. The CM of PC3 or DU145 enhanced N-cadherin expression on BM-MSCs, but the LNCaP CM did not. SB505124, SB431542, and TGFBR1 knockdown prevented an increase in N-cadherin expression. N-cadherin knockdown inhibited the collective migration of BM-MSCs toward the PC3 CM. We identified N-cadherin as a mediator of BM-MSCs’ migration toward hormone-insensitive prostate tumor cells expressing TGF-β and introduced a novel strategy for controlling and re-engineering the prostate tumor microenvironment.


2021 ◽  
Author(s):  
Jana Zarubova ◽  
Mohammad Mahdi Hasani-Sadrabadi ◽  
Sam CP Norris ◽  
Andrea M Kasko ◽  
Song Li

AbstractCell clusters that collectively migrate from primary tumors appear to be far more potent in forming distant metastases than single cancer cells. A better understanding of collective cell migration phenomenon and the involvement of different cell types during this process is needed. Here, we utilize a micropatterned surface composed of a thousand of low-adhesive microwells to screen motility of spheroids containing different cell types by analyzing their ability to move from the bottom to the top of the microwells. Mesenchymal stem cells (MSCs) spheroid migration was efficient in contrast to cancer cell only spheroids. In spheroids with both cell types mixed together, MSCs were able to carry the low-motile cancer cells during migration. As the percentage of MSCs increased in the spheroids, more migrating spheroids were detected. Extracellular vesicles secreted by MSCs also contributed to the pro-migratory effect exerted by MSCs. However, the transport of cancer cells was more efficient when MSCs were physically present in the cluster. Similar results were obtained when cell clusters were encapsulated within a micropatterned hydrogel, where collective migration was guided by micropatterned matrix stiffness. These results suggest that stromal cells facilitate the migration of cancer cell clusters, which is contrary to the general belief that malignant cells metastasize independently.SignificanceDuring metastasis, tumor cells may migrate as a cluster, which exhibit higher metastatic capacity compared to single cells. However, whether and how non-cancer cells contained in tumor cluster regulate it’s migration is not clear. Here, we utilize two unique approaches to study collective tumor cell migration in vitro: first, in low-adhesive microwells and second, in micropatterned hydrogels to analyze migration in 3D microenvironment. Our results indicate that MSCs in tumor cell clusters could play an important role in the dissemination of cancer cells by actively transporting low-motile cancer cells. In addition, MSC-released paracrine factors also increase the motility of tumor cells. These findings reveal a new mechanism of cancer cell migration and may lead to new approaches to suppress metastases.


2019 ◽  
Vol 14 (1) ◽  
pp. 43-51 ◽  
Author(s):  
Mahboobeh Razmkhah ◽  
Shabnam Abtahi ◽  
Abbas Ghaderi

Mesenchymal Stem Cells [MSCs] are a heterogeneous population of fibroblast-like cells which maintain self-renewability and pluripotency. Many studies have demonstrated the immunomodulatory effects of MSCs on the innate and adaptive immune cells. As a result of interactions with tumor cells, microenvironment and immune-stimulating milieu, MSCs contribute to tumor progression by several mechanisms, including sustained proliferative signal in cancer stem cells [CSCs], inhibition of tumor cell apoptosis, transition to tumor-associated fibroblasts [TAFs], promotion of angiogenesis, stimulation of epithelial-mesenchymal transition [EMT], suppression of immune responses, and consequential promotion of tumor metastasis. Here, we present an overview of the latest findings on Janusfaced roles that MSCs play in the tumor microenvironment [TME], with a concise focus on innate and adaptive immune responses.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Surendar Aravindhan ◽  
Sura Salman Ejam ◽  
Methaq Hadi Lafta ◽  
Alexander Markov ◽  
Alexei Valerievich Yumashev ◽  
...  

AbstractA crosstalk established between tumor microenvironment and tumor cells leads to contribution or inhibition of tumor progression. Mesenchymal stem cells (MSCs) are critical cells that fundamentally participate in modulation of the tumor microenvironment, and have been reported to be able to regulate and determine the final destination of tumor cell. Conflicting functions have been attributed to the activity of MSCs in the tumor microenvironment; they can confer a tumorigenic or anti-tumor potential to the tumor cells. Nonetheless, MSCs have been associated with a potential to modulate the tumor microenvironment in favouring the suppression of cancer cells, and promising results have been reported from the preclinical as well as clinical studies. Among the favourable behaviours of MSCs, are releasing mediators (like exosomes) and their natural migrative potential to tumor sites, allowing efficient drug delivering and, thereby, efficient targeting of migrating tumor cells. Additionally, angiogenesis of tumor tissue has been characterized as a key feature of tumors for growth and metastasis. Upon introduction of first anti-angiogenic therapy by a monoclonal antibody, attentions have been drawn toward manipulation of angiogenesis as an attractive strategy for cancer therapy. After that, a wide effort has been put on improving the approaches for cancer therapy through interfering with tumor angiogenesis. In this article, we attempted to have an overview on recent findings with respect to promising potential of MSCs in cancer therapy and had emphasis on the implementing MSCs to improve them against the suppression of angiogenesis in tumor tissue, hence, impeding the tumor progression.


Blood ◽  
2006 ◽  
Vol 108 (11) ◽  
pp. 352-352
Author(s):  
Michael Andreeff ◽  
Jennifer Dembinski ◽  
Brett M. Hall ◽  
Matus Studeny ◽  
Xiaoyang Ling ◽  
...  

Abstract The formation of stroma is essential for tumor growth and involves complex interactions between malignant tumor cells, and non-tumor stromal cells. We have previously demonstrated that mesenchymal stem cells (MSC) integrate into solid tumors as stromal elements (Cancer Res62:3603, 2002; JNCI96:1593, 2004,), suggesting the development of anti-cancer therapies based on the intratumoral production of agents by gene-modified MSC. However, no direct evidence has demonstrated this migration and selective engraftment into the tumor microenvironment. Therefore, we noninvasively visualized MSC using luciferase bioluminescence. MSC were labeled by a fiber modified Ad vector expressing firefly luciferase (AdLux-F/RGD) and these MSC-Lux were injected into normal (healthy) SCID mice or mice bearing established metastatic breast or ovarian tumors. Biodistributed MSC-Lux were imaged utilizing the Xenogen IVIS detection system. In normal mice, human MSC (hMSC) migrated to the lungs where they remained resident for 7–10 days. In animals bearing established metastatic lung tumors, IV injected hMSC again migrated to the lungs. However, in contrast to control mice, the Lux signal remained strong over a 15-day period with only a slight decrease over the first 10 days. After IP injection, hMSC-LUX were detected in the peritoneum, and after 7 days, no hMSC-LUX was detected in normal animals, while strong punctate regions of LUX-activity were observed in ovarian tumors. In contrast to SCID mice injected with hMSC, healthy Balb/C mice injected with Balb/C derived MSC-LUX initially migrated to the lungs and within 2.5 hrs had exited the lungs to remain liver and spleen resident for 5–7 days. When tumor cells were transduced with renilla luciferase constructs, the co-localization and dynamic interactions of firefly luciferase MSC and renilla luciferase tumors could be examined in detail. Mechanisms regulating the MSC-tumor interactions involve TGF-beta, HGF/c-Met, and EGFR and will be discussed. We then examined whether hMSC-producing interferon-beta (IFNb-MSC) could inhibit the growth of metastatic tumors in the lungs of SCID mice. When injected IV (4 doses of 106 MSC/week) into SCID mice bearing pulmonary metastases of carcinomas or melanomas, tumor growth was significantly inhibited as compared to untreated or vector-control MSC controls (p= 0.007), while recombinant IFNb protein (50,000 IU qod) was ineffective (p=0.14). IV injected IFNb-MSC prolonged the survival of mice bearing metastatic breast carcinomas (p=0.001) Intraperitoneal (IP) injections of IFN-MSC into mice carrying ovarian carcinomas resulted in doubling of survival in SKOV-3, and cures in 70% of mice carrying OVAR-3 tumors. MSC injected into the ipsilateral or contralateral carotid artery were found to localize to glioma xenografts in mice and IFNb-MSC significantly (p<0.05) prolonged survival of these mice. These data suggest that systemically administered gene-modified MSC selectively engraft into the tumor microenvironment and remain resident as part of the tumor architecture. MSC-expressing IFN-b inhibit the growth of melanomas, gliomas, metastatic breast and ovarian cancers in vivo and prolong the survival of mice bearing established tumors. Clinical trials are in preparation.


2014 ◽  
Vol 2014 ◽  
pp. 1-14 ◽  
Author(s):  
Simona L. Schlereth ◽  
Nasrin Refaian ◽  
Sandra Iden ◽  
Claus Cursiefen ◽  
Ludwig M. Heindl

Lymphangiogenesis is a very early step in lymphatic metastasis. It is regulated and promoted not only by the tumor cells themselves, but also by cells of the tumor microenvironment, including cancer associated fibroblasts, mesenchymal stem cells, dendritic cells, or macrophages. Even the extracellular matrix as well as cytokines and growth factors are involved in the process of lymphangiogenesis and metastasis. The cellular and noncellular components influence each other and can be influenced by the tumor cells. The knowledge about mechanisms behind lymphangiogenesis in the tumor microenvironmental crosstalk is growing and offers starting points for new therapeutic approaches.


2018 ◽  
Vol 2018 ◽  
pp. 1-12 ◽  
Author(s):  
Petra Gener ◽  
Joaquin Seras-Franzoso ◽  
Patricia González Callejo ◽  
Fernanda Andrade ◽  
Diana Rafael ◽  
...  

There are remarkable similarities in the description of cancer stem cells (CSCs) and cancer cells with mesenchymal phenotype. Both cell types are highly tumorigenic, resistant against common anticancer treatment, and thought to cause metastatic growth. Moreover, cancer cells are able to switch between CSC and non-CSC phenotypes and vice versa, to ensure the necessary balance within the tumor. Likewise, cancer cells can switch between epithelial and mesenchymal phenotypes via well-described transition (EMT/MET) that is thought to be crucial for tumor propagation. In this review, we discuss whether, and to which extend, the CSCs and mesenchymal cancer cells are overlapping phenomena in terms of mechanisms, origin, and implication for cancer treatment. As well, we describe the dynamism of both phenotypes and involvement of the tumor microenvironment in CSC reversion and in EMT.


Sign in / Sign up

Export Citation Format

Share Document