scholarly journals Direct Visualization of Amlodipine Intervention into Living Cells by Means of Fluorescence Microscopy

Molecules ◽  
2021 ◽  
Vol 26 (10) ◽  
pp. 2997
Author(s):  
Christine Quentin ◽  
Rūta Gerasimaitė ◽  
Alexandra Freidzon ◽  
Levon S. Atabekyan ◽  
Gražvydas Lukinavičius ◽  
...  

Amlodipine, a unique long-lasting calcium channel antagonist and antihypertensive drug, has weak fluorescence in aqueous solutions. In the current paper, we show that direct visualization of amlodipine in live cells is possible due to the enhanced emission in cellular environment. We examined the impact of pH, polarity and viscosity of the environment as well as protein binding on the spectral properties of amlodipine in vitro, and used quantum chemical calculations for assessing the mechanism of fluorescence quenching in aqueous solutions. The confocal fluorescence microscopy shows that the drug readily penetrates the plasma membrane and accumulates in the intracellular vesicles. Visible emission and photostability of amlodipine allow confocal time-lapse imaging and the drug uptake monitoring.

2007 ◽  
Vol 1061 ◽  
Author(s):  
Paul Campbell

ABSTRACTImaging live cells using atomic force microscopy (AFM) is perhaps the most challenging role within which the tool can be deployed. The procedure requires that the target cells be maintained under thermostated physiological fluids in order that viability is retained. Furthermore, once the imaging probe has engaged with the target cells, the use of appropriate imaging forces that guarantee reasonable spatial resolution must be weighed against the need to maintain a ‘light touch’ so that the integrity of this most delicate structure is not compromised. The purpose of the present study was ostensibly to image live cells (PtK2 epithelial cells) in-vitro and to examine those force regimes and tip properties that lead to best imaging. Interestingly, by employing ultra low imaging forces (FL < 100pN) whilst operating in contact mode, as opposed to ‘tapping’ mode, it was possible to achieve spatial resolutions in the range of about 25nm, which was sufficient to resolve the constituent fibres of the cytoskeletal network and other subcellular detail. Emipircally, certain tips were found to generate better resolution images than others, and we characterized those tips by imaging a commercial ion-beam etched spike array to determine not only the radius of curvature at the active imaging tip, but also the general morphology of the apex region. Force distance curves could be obtained which allowed a Hertzian analysis of the cellular elasticity. In this instance a value for the Young's modulus, EC, was determined to be 75kPa. Time-lapse imaging in this low force regime allowed the non-intrusive observation of cytoskeletal reorganisation during motility over extended periods of up to 7 hours.


Circulation ◽  
2014 ◽  
Vol 130 (suppl_2) ◽  
Author(s):  
Susan M Armstrong ◽  
Michael G Sugiyama ◽  
Andrew Levy ◽  
Dante Neculai ◽  
Mark Roufaiel ◽  
...  

Introduction: Retention of LDL beneath the arterial endothelium initiates an inflammatory response culminating in atherosclerosis. How LDL crosses the endothelium to enter the arterial wall remains unknown. While LDL could conceivably pass between endothelial cells (paracellularly) or through them (transcytosis), electron microscopy studies in animals revealed LDL in intracellular vesicles and none at intercellular junctions. This, combined with the absence of endothelial injury or intercellular gaps in early atherosclerosis, suggests that transcytosis is the major route. However, technical challenges with studying transcytosis have made confirming and extending these findings difficult. We developed and validated a novel assay for measuring the transcytosis of native LDL across live human coronary artery endothelium in vitro. Using this assay, we propose to elucidate the regulation of LDL transcytosis and have identified a novel role for SR-B1. Methods and Results: Experiments were performed using primary human coronary artery endothelial monolayers. Transcytosis was quantified in single live cells in real time using total internal reflectance fluorescence microscopy. Transcytosis of LDL was saturable and inhibited by excess unlabeled LDL. By fluorescence microscopy we found that DiI-LDL colocalized significantly with scavenger receptor, class B, type 1 (SR-B1). Unexpectedly, overexpression of SR-BI resulted in increased LDL transcytosis, while knockdown of SR-BI by siRNA inhibited transcytosis. Excess HDL, the canonical SR-B1 ligand, also decreased LDL transcytosis. To confirm the occurrence of transcytosis in an intact vessel, we perfused murine aortas ex vivo with both LDL and dextran of a smaller molecular radius. We observed the accumulation of subendothelial LDL without dextran, indicating that transcytosis of LDL occurs in intact vessels. Conclusions: The accumulation of LDL in the subendothelial intima is the first step of atherosclerosis yet little is known about how it occurs. Our data suggests that transcytosis of LDL is an important contributor, particularly in the early stages of the disease. By identifying the mechanisms of transcytosis, our work could have important implications for its pathogenesis and therapy.


Methods ◽  
2018 ◽  
Vol 133 ◽  
pp. 81-90 ◽  
Author(s):  
Katja M. Piltti ◽  
Brian J. Cummings ◽  
Krystal Carta ◽  
Ayla Manughian-Peter ◽  
Colleen L. Worne ◽  
...  

2021 ◽  
Vol 159 ◽  
pp. 147-152
Author(s):  
Karolina Fryc ◽  
Agnieszka Nowak ◽  
Barbara Kij ◽  
Joanna Kochan ◽  
Pawel M. Bartlewski ◽  
...  

2019 ◽  
Vol 31 (12) ◽  
pp. 1862 ◽  
Author(s):  
N. A. Martino ◽  
G. Marzano ◽  
A. Mastrorocco ◽  
G. M. Lacalandra ◽  
L. Vincenti ◽  
...  

Time-lapse imaging was used to establish the morphokinetics of equine embryo development to the blastocyst stage after invitro oocyte maturation (IVM), intracytoplasmic sperm injection (ICSI) and embryo culture, in oocytes held overnight at room temperature (22–27°C; standard conditions) before IVM. Embryos that developed to the blastocyst stage underwent precleavage cytoplasmic extrusion and cleavage to the 2-, 3- and 4-cell stages significantly earlier than did embryos that arrested in development. We then determined the rate of blastocyst formation after ICSI in oocytes held for 2 days at either 15°C or room temperature before IVM (15-2d and RT-2d treatment groups respectively). The blastocyst development rate was significantly higher in the 15-2d than in the RT-2d group (13% vs 0% respectively). The failure of blastocyst development in the RT-2d group precluded comparison of morphokinetics of blastocyst development between treatments. In any condition examined, development to the blastocyst stage was characterised by earlier cytoplasmic extrusion before cleavage, earlier cleavage to 2- and 4-cell stages and reduced duration at the 2-cell stage compared with non-competent embryos. In conclusion, this study presents morphokinetic parameters predictive of embryo development invitro to the blastocyst stage after ICSI in the horse. We conclude that time-lapse imaging allows increased precision for evaluating effects of different treatments on equine embryo development.


Processes ◽  
2020 ◽  
Vol 8 (6) ◽  
pp. 664 ◽  
Author(s):  
Leszek A. Dobrzański ◽  
Lech B. Dobrzański ◽  
Anna Achtelik-Franczak ◽  
Joanna Dobrzańska

This paper presents a comparison of the impact of milling technology in the computer numerically controlled (CNC) machining centre and selective laser sintering (SLS) and on the structure and properties of solid Ti6Al4V alloy. It has been shown that even small changes in technological conditions in the SLS manufacturing variant significantly affect changes from two to nearly two and a half times in tensile and bending strengths. Both the tensile and bending strength obtained in the most favourable manufacturing variant by the SLS method is over 25% higher than in the case of cast materials subsequently processed by milling. Plug-and-play SLS conditions provide about 60% of the possibilities. Structural, tribological and electrochemical tests were carried out. In vitro biological tests using osteoblasts confirm the good tendency for the proliferation of live cells on the substrate manufactured under the most favourable SLS conditions. The use of SLS additive technology for the manufacturing of dental implants and abutments made of Ti6Al4V alloy in combination with the digitisation of dental diagnostics and computer-aided design and manufacture of computer-aided design/manufacturing (CAD/CAM) following the idea of Dentistry 4.0 is the best choice of technology for manufacturing of prosthetic and implant devices used in dentistry.


2001 ◽  
Vol 75 (15) ◽  
pp. 7114-7121 ◽  
Author(s):  
Jennifer L. Nargi-Aizenman ◽  
Diane E. Griffin

ABSTRACT Virus infection of neurons leads to different outcomes ranging from latent and noncytolytic infection to cell death. Viruses kill neurons directly by inducing either apoptosis or necrosis or indirectly as a result of the host immune response. Sindbis virus (SV) is an alphavirus that induces apoptotic cell death both in vitro and in vivo. However, apoptotic changes are not always evident in neurons induced to die by alphavirus infection. Time lapse imaging revealed that SV-infected primary cortical neurons exhibited both apoptotic and necrotic morphological features and that uninfected neurons in the cultures also died. Antagonists of the N-methyl-d-aspartate (NMDA) subtype of glutamate receptors protected neurons from SV-induced death without affecting virus replication or SV-induced apoptotic cell death. These results provide evidence that SV infection activates neurotoxic pathways that result in aberrant NMDA receptor stimulation and damage to infected and uninfected neurons.


mBio ◽  
2017 ◽  
Vol 8 (3) ◽  
Author(s):  
Rong Gao ◽  
Ann M. Stock

ABSTRACT Cells rely on accurate control of signaling systems to adapt to environmental perturbations. System deactivation upon stimulus removal is as important as activation of signaling pathways. The two-component system (TCS) is one of the major bacterial signaling schemes. In many TCSs, phosphatase activity of the histidine kinase (HK) is believed to play an essential role in shutting off the pathway and resetting the system to the prestimulus state. Two basic challenges are to understand the dynamic behavior of system deactivation and to quantitatively evaluate the role of phosphatase activity under natural cellular conditions. Here we report a kinetic analysis of the response to shutting off the archetype Escherichia coli PhoR-PhoB TCS pathway using both transcription reporter assays and in vivo phosphorylation analyses. Upon removal of the stimulus, the pathway is shut off by rapid dephosphorylation of the PhoB response regulator (RR) while PhoB-regulated gene products gradually reset to prestimulus levels through growth dilution. We developed an approach combining experimentation and modeling to assess in vivo kinetic parameters of the phosphatase activity with kinetic data from multiple phosphatase-diminished mutants. This enabled an estimation of the PhoR phosphatase activity in vivo , which is much stronger than the phosphatase activity of PhoR cytoplasmic domains analyzed in vitro . We quantitatively modeled how strong the phosphatase activity needs to be to suppress nonspecific phosphorylation in TCSs and discovered that strong phosphatase activity of PhoR is required for cross-phosphorylation suppression. IMPORTANCE Activation of TCSs has been extensively studied; however, the kinetics of shutting off TCS pathways is not well characterized. We present comprehensive analyses of the shutoff response for the PhoR-PhoB system that reveal the impact of phosphatase activity on shutoff kinetics. This allows development of a quantitative framework not only to characterize the phosphatase activity in the natural cellular environment but also to understand the requirement for specific strengths of phosphatase activity to suppress nonspecific phosphorylation. Our model suggests that the ratio of the phosphatase rate to the nonspecific phosphorylation rate correlates with TCS expression levels and the ratio of the RR to HK, which may contribute to the great diversity of enzyme levels and activities observed in different TCSs.


Sign in / Sign up

Export Citation Format

Share Document