scholarly journals Roseabol A, a New Peptaibol from the Fungus Clonostachys rosea

Molecules ◽  
2021 ◽  
Vol 26 (12) ◽  
pp. 3594
Author(s):  
Chang-Kwon Kim ◽  
Lauren R. H. Krumpe ◽  
Emily Smith ◽  
Curtis J. Henrich ◽  
Isaac Brownell ◽  
...  

A new 11 amino acid linear peptide named roseabol A (1) and the known compound 13-oxo-trans-9,10-epoxy-11(E)-octadecenoic acid (2) were isolated from the fungus Clonostachys rosea. Combined NMR and MS analysis revealed that roseabol A (1) contained amino acid residues characteristic of the peptaibol family of peptides such as isovaline, α-aminoisobutyric acid, hydroxyproline, leucinol, and an N-terminal isovaleric acid moiety. The amino acid sequence was established by a combination of NMR studies and tandem MS fragmentation analyses, and the absolute configurations of the constituent amino acids of 1 were determined by the advanced Marfey’s method. Compound 2 showed inhibitory activity against Merkel cell carcinoma, a rare and difficult-to-treat type of skin cancer, with an IC50 value of 16.5 μM.

1995 ◽  
Vol 60 (7) ◽  
pp. 1229-1235 ◽  
Author(s):  
Ivana Zoulíková ◽  
Ivan Svoboda ◽  
Jiří Velek ◽  
Václav Kašička ◽  
Jiřina Slaninová ◽  
...  

The vasoactive intestinal (poly)peptide (VIP) is a linear peptide containing 28 amino acid residues, whose primary structure indicates a low metabolic stability. The following VIP fragments, as potential metabolites, and their analogues were prepared by synthesis on a solid: [His(Dnp)1]VIP(1-10), VIP(11-14), [D-Arg12]VIP(11-14), [Lys(Pac)15,21,Arg20]VIP(15-22), and VIP(23-28). After purification, the peptides were characterized by amino acid analysis, mass spectrometry, RP HPLC, and capillary zone electrophoresis. In some tests, detailed examination of the biological activity of the substances in vivo and in vitro gave evidence of a low, residual activity of some fragments, viz. a depressoric activity in vivo for [His(Dnp)1]VIP(1-10) and a stimulating activity for the release of α-amylase in vitro and in vivo for [Lys(Pac)15,21,Arg20]VIP(15-22) and VIP(23-28).


2008 ◽  
Vol 389 (1) ◽  
pp. 83-90 ◽  
Author(s):  
José Pfizer ◽  
Irmgard Assfalg-Machleidt ◽  
Werner Machleidt ◽  
Norbert Schaschke

Abstract The 27-mer peptide CP1B-[1–27] derived from exon 1B of calpastatin stands out among the known inhibitors for μ- and m-calpain due to its high potency and selectivity. By systematical truncation, a 20-mer peptide, CP1B-[4–23], was identified as the core sequence required to maintain the affinity/selectivity profile of CP1B-[1–27]. Starting with this peptide, the turn-like region Glu10(i)-Leu11(i+1)-Gly12(i+2)-Lys13(i+3) was investigated. Sequence alignment of subdomains 1B, 2B, 3B and 4B from different mammalians revealed that the amino acid residues in position i+1 and i+2 are almost invariably flanked by oppositely charged residues, pointing towards a turn-like conformation stabilized by salt bridge/H-bond interaction. Accordingly, using different combinations of acidic and basic residues in position i and i+3, a series of conformationally constrained variants of CP1B-[4–23] were synthesized by macrolactamization utilizing the side chain functionalities of these residues. With the combination of Glu(i)/Dab(i+3), the maximum of conformational rigidity without substantial loss in affinity/selectivity was reached. These results clearly demonstrate that the linear peptide chain corresponding to subdomain 1B reverses its direction in the region Glu10-Lys13 upon binding to μ-calpain, and thereby adopts a loop-like rather than a tight turn conformation at this site.


Biochemistry ◽  
1982 ◽  
Vol 21 (14) ◽  
pp. 3452-3460 ◽  
Author(s):  
Takashi Ogino ◽  
David H. Croll ◽  
Ikunoshin Kato ◽  
John L. Markley

Antibiotics ◽  
2020 ◽  
Vol 9 (6) ◽  
pp. 278 ◽  
Author(s):  
Gloria Crespo ◽  
Ignacio Pérez-Victoria ◽  
Francisco Javier Ortiz-López ◽  
Víctor González-Menéndez ◽  
Mercedes de la Cruz ◽  
...  

An antifungal lipodepsipeptide was obtained from cultures of the fungus Foliophoma fallens CF-236885. Its structure, elucidated by HRMS and NMR spectroscopy, contained Gly, Thr, Asn, β-Ala, Orn, Ala, two Ser residues, and 3-hydroxy-4-methylhexadecanoic acid. The absolute configuration of its amino acid residues was determined using Marfey’s analysis and J-based configuration analysis helped to establish the relative configuration of the 3-hydroxy-4-methylhexadecanoic acid moiety. A literature search retrieved a patent describing antibiotic TKR2999 (1), whose non-disclosed structure was confirmed to be identical to that found for our compound, according to its physicochemical properties and NMR spectra. Compound 1 displayed potent antifungal activity against Aspergillus fumigatus and a panel of Candida strains.


2020 ◽  
Vol 21 (19) ◽  
pp. 7206
Author(s):  
Anastasia Nazarova ◽  
Dmitriy Shurpik ◽  
Pavel Padnya ◽  
Timur Mukhametzyanov ◽  
Peter Cragg ◽  
...  

Novel water-soluble multifunctional pillar[5]arenes containing amide-ammonium-amino acid moiety were synthesized. The compounds demonstrated a superior ability to bind (1S)-(+)-10-camphorsulfonic acid (S-CSA) and methyl orange dye depending on the nature of the substituent, resulting in the formation one-to-one complexes with both guests. The formation of host-guest complexes was confirmed by ultraviolet (UV), circular dichroism (CD) and 1H NMR spectroscopy. This work demonstrates the first case of using S-CSA as a chiral template for the non-covalent self-assembly of architectures based on pillar[5]arenes. It was shown that pillar[5]arenes with glycine or L-alanine fragments formed aggregates with average hydrodynamic diameters (d) of 165 and 238 nm, respectively. It was established that the addition of S-CSA to the L-alanine-containing derivative led to the formation of micron-sized aggregates with d of 713 nm. This study may advance the design novel stereoselective catalysts and transmembrane amino acid channels.


2019 ◽  
Vol 15 ◽  
pp. 1581-1591
Author(s):  
Małgorzata Urbańczyk ◽  
Michał Jewgiński ◽  
Joanna Krzciuk-Gula ◽  
Jerzy Góra ◽  
Rafał Latajka ◽  
...  

Antifreeze glycoproteins are a class of biological agents which enable living at temperatures below the freezing point of the body fluids. Antifreeze glycopeptides usually consist of repeating tripeptide unit (-Ala-Ala-Thr*-), glycosylated at the threonine side chain. However, on the microscopic level, the mechanism of action of these compounds remains unclear. As previous research has shown, antifreeze activity of antifreeze glycopeptides strongly relies on the overall conformation of the molecule as well an on the stereochemistry of amino acid residues. The desired monoglycosylated analogues with acetylated amino termini and the carboxy termini in form of N-methylamide have been synthesized. Conformational nuclear magnetic resonance (NMR) studies of the designed analogues have shown a strong influence of the stereochemistry of amino acid residues on the peptide chain stability, which could be connected to the antifreeze activity of these compounds. A better understanding of the mechanism of action of antifreeze glycopeptides would allow applying these materials, e.g., in food industry and biomedicine.


Sign in / Sign up

Export Citation Format

Share Document