antifreeze activity
Recently Published Documents


TOTAL DOCUMENTS

84
(FIVE YEARS 12)

H-INDEX

24
(FIVE YEARS 1)

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
N. M.-Mofiz Uddin Khan ◽  
Tatsuya Arai ◽  
Sakae Tsuda ◽  
Hidemasa Kondo

AbstractAntifreeze proteins (AFPs) inhibit ice growth by adsorbing onto specific ice planes. Microbial AFPs show diverse antifreeze activity and ice plane specificity, while sharing a common molecular scaffold. To probe the molecular mechanisms responsible for AFP activity, we here characterized the antifreeze activity and crystal structure of TisAFP7 from the snow mold fungus Typhula ishikariensis. TisAFP7 exhibited intermediate activity, with the ability to bind the basal plane, compared with a hyperactive isoform TisAFP8 and a moderately active isoform TisAFP6. Analysis of the TisAFP7 crystal structure revealed a bound-water network arranged in a zigzag pattern on the surface of the protein’s ice-binding site (IBS). While the three AFP isoforms shared the water network pattern, the network on TisAFP7 IBS was not extensive, which was likely related to its intermediate activity. Analysis of the TisAFP7 crystal structure also revealed the presence of additional water molecules that form a ring-like network surrounding the hydrophobic side chain of a crucial IBS phenylalanine, which might be responsible for the increased adsorption of AFP molecule onto the basal plane. Based on these observations, we propose that the extended water network and hydrophobic hydration at IBS together determine the TisAFP activity.


2020 ◽  
Author(s):  
N. M.-Mofiz Khan ◽  
Tatsuya Arai ◽  
Sakae Tsuda ◽  
Hidemasa Kondo

Abstract Antifreeze proteins (AFPs) inhibit ice growth by adsorbing onto a specific ice plane. Microbial AFPs show diverse antifreeze activity and ice plane specificity, while sharing a common molecular scaffold. To probe the molecular mechanisms responsible for AFP activity, we here characterized the antifreeze activity and crystal structure of TisAFP7 from the snow mold fungus Typhula ishikariensis. TisAFP7 exhibited intermediate activity, with the ability to bind ice basal plane, compared with a hyperactive isoform TisAFP8 and a moderately active isoform TisAFP6. Analysis of the TisAFP7 crystal structure revealed a bound-water network arranged in a zigzag pattern on the surface of the protein’s ice-binding site (IBS). While the three AFP isoforms shared the water network pattern, the network on TisAFP7 IBS was not extensive, which was likely related to its intermediate activity. Analysis of the TisAFP7 crystal structure also revealed the presence of additional water molecules that form a ring-like network surrounding the hydrophobic side chain of a crucial IBS phenylalanine, which might be responsible for the increased adsorption of AFP molecule onto the basal plane. Based on these observations, we propose that the extended water network and hydrophobic hydration at IBS together determine the TisAFP activity.


Langmuir ◽  
2020 ◽  
Vol 36 (9) ◽  
pp. 2439-2448 ◽  
Author(s):  
Surbhi Kumari ◽  
Aswin V. Muthachikavil ◽  
Jyoti Kumar Tiwari ◽  
Sudeep N. Punnathanam

2020 ◽  
Vol 71 (10) ◽  
pp. 2933-2942
Author(s):  
Stefania Short ◽  
Rommy Díaz ◽  
John Quiñones ◽  
Jorge Beltrán ◽  
Jorge G Farías ◽  
...  

Abstract Deschampsia antarctica has managed to colonize the maritime Antarctic. One of the main factors associated with its tolerance to low temperatures is the presence of apoplastic proteins with antifreeze activity. This work focuses on the effect of cold acclimation of D. antarctica on the accumulation of apoplastic proteins with antifreeze activity. Antifreeze proteins present in apoplastic extracts were purified by ice affinity purification, and their identity was determined by protein sequencing. D. antarctica plants were subjected to 22 days of cold acclimation at 4 °C. The highest content of apoplastic proteins with antifreeze activity was obtained at between 12 and 16 days of acclimation. Protein sequencing allowed their identification with >95% probability. Percentage coverage was 74% with D. antarctica ice recrystallization inhibition protein 1 (DaIRIP1) and 55% with DaIRIP3. Cold acclimation of D. antarctica improved the yield of apoplastic proteins, and resulted in an increase in the antifreeze activity of apoplastic extracts. An in silico analysis suggested that the fluctuations presented by the three-dimensional structures of DaIRIPs help to explain the presence of certain DaIRIPs in apoplastic extracts under the cold acclimation conditions evaluated.


2019 ◽  
Vol 15 ◽  
pp. 1581-1591
Author(s):  
Małgorzata Urbańczyk ◽  
Michał Jewgiński ◽  
Joanna Krzciuk-Gula ◽  
Jerzy Góra ◽  
Rafał Latajka ◽  
...  

Antifreeze glycoproteins are a class of biological agents which enable living at temperatures below the freezing point of the body fluids. Antifreeze glycopeptides usually consist of repeating tripeptide unit (-Ala-Ala-Thr*-), glycosylated at the threonine side chain. However, on the microscopic level, the mechanism of action of these compounds remains unclear. As previous research has shown, antifreeze activity of antifreeze glycopeptides strongly relies on the overall conformation of the molecule as well an on the stereochemistry of amino acid residues. The desired monoglycosylated analogues with acetylated amino termini and the carboxy termini in form of N-methylamide have been synthesized. Conformational nuclear magnetic resonance (NMR) studies of the designed analogues have shown a strong influence of the stereochemistry of amino acid residues on the peptide chain stability, which could be connected to the antifreeze activity of these compounds. A better understanding of the mechanism of action of antifreeze glycopeptides would allow applying these materials, e.g., in food industry and biomedicine.


Biomolecules ◽  
2019 ◽  
Vol 9 (4) ◽  
pp. 139
Author(s):  
Aya Yamazaki ◽  
Yoshiyuki Nishimiya ◽  
Sakae Tsuda ◽  
Koji Togashi ◽  
Hiroyuki Munehara

Many marine species inhabiting icy seawater produce antifreeze proteins (AFPs) to prevent their body fluids from freezing. The sculpin species of the superfamily Cottoidea are widely found from the Arctic to southern hemisphere, some of which are known to express AFP. Here we clarified DNA sequence encoding type I AFP for 3 species of 2 families (Cottidae and Agonidae) belonging to Cottoidea. We also examined antifreeze activity for 3 families and 32 species of Cottoidea (Cottidae, Agonidae, and Rhamphocottidae). These fishes were collected in 2013–2015 from the Arctic Ocean, Alaska, Japan. We could identify 8 distinct DNA sequences exhibiting a high similarity to those reported for Myoxocephalus species, suggesting that Cottidae and Agonidae share the same DNA sequence encoding type I AFP. Among the 3 families, Rhamphocottidae that experience a warm current did not show antifreeze activity. The species inhabiting the Arctic Ocean and Northern Japan that often covered with ice floe showed high activity, while those inhabiting Alaska, Southern Japan with a warm current showed low/no activity. These results suggest that Cottoidea acquires type I AFP gene before dividing into Cottidae and Agonidae, and have adapted to each location with optimal antifreeze activity level.


Sign in / Sign up

Export Citation Format

Share Document