A High-Throughput Screening of N-Carbobenzoxy-L-Tryptophan Imprinted Polymers and their Application for Monolithic Chiral Stationary Phase

2012 ◽  
Vol 535-537 ◽  
pp. 1525-1528 ◽  
Author(s):  
Jian Qi ◽  
Li Guo ◽  
Hai Feng Sang

Molecular imprinting is a technique to prepare polymers with predetermined selectivity, specific recognition and predesigned affinity to a desired molecule. The stability and low cost of molecularly imprinted polymers (MIPs) render them attractive for a broad range of applications. Currently, MIP technique has been widely used in chiral separation. In this study, a series of molecularly imprinted polymers for N-Carbobenzoxy-L-tryptophan (N-Cbz-L-Trp) synthesized in different conditions were prepared in a small scale to simulate the monolithic chiral stationary phases (CSPs) primarily. By coupling in situ processing and batch rebinding evaluation, the type of functional monomers, which likely to affect the chiral selectivity of MIPs, was investigated. It was found that a MIP comprising a mixture of functional monomer 4-vinylpyridine (4-VP) and porogen 1-dodecanol/toluene exhibited the highest binding capacity and chiral selectivity for N-Carbobenzoxy-L-tryptophan. Thereafter, the monolithic MIP synthesized in screened optimum condition is used as chiral stationary phase in HPLC, which shows favourable separating capacity.

Molecules ◽  
2021 ◽  
Vol 26 (15) ◽  
pp. 4607
Author(s):  
Dounia Elfadil ◽  
Abderrahman Lamaoui ◽  
Flavio Della Pelle ◽  
Aziz Amine ◽  
Dario Compagnone

Detection of relevant contaminants using screening approaches is a key issue to ensure food safety and respect for the regulatory limits established. Electrochemical sensors present several advantages such as rapidity; ease of use; possibility of on-site analysis and low cost. The lack of selectivity for electrochemical sensors working in complex samples as food may be overcome by coupling them with molecularly imprinted polymers (MIPs). MIPs are synthetic materials that mimic biological receptors and are produced by the polymerization of functional monomers in presence of a target analyte. This paper critically reviews and discusses the recent progress in MIP-based electrochemical sensors for food safety. A brief introduction on MIPs and electrochemical sensors is given; followed by a discussion of the recent achievements for various MIPs-based electrochemical sensors for food contaminants analysis. Both electropolymerization and chemical synthesis of MIP-based electrochemical sensing are discussed as well as the relevant applications of MIPs used in sample preparation and then coupled to electrochemical analysis. Future perspectives and challenges have been eventually given.


BioTechniques ◽  
2020 ◽  
Vol 69 (6) ◽  
pp. 406-419
Author(s):  
Zahra El-Schich ◽  
Yuecheng Zhang ◽  
Marek Feith ◽  
Sarah Beyer ◽  
Louise Sternbæk ◽  
...  

Molecularly imprinted polymers (MIPs) are currently widely used and further developed for biological applications. The MIP synthesis procedure is a key process, and a wide variety of protocols exist. The templates that are used for imprinting vary from the smallest glycosylated glycan structures or even amino acids to whole proteins or bacteria. The low cost, quick preparation, stability and reproducibility have been highlighted as advantages of MIPs. The biological applications utilizing MIPs discussed here include enzyme-linked assays, sensors, in vivo applications, drug delivery, cancer diagnostics and more. Indeed, there are numerous examples of how MIPs can be used as recognition elements similar to natural antibodies.


The Analyst ◽  
2015 ◽  
Vol 140 (9) ◽  
pp. 3113-3120 ◽  
Author(s):  
Elena V. Piletska ◽  
Bashar H. Abd ◽  
Agata S. Krakowiak ◽  
Anitha Parmar ◽  
Demi L. Pink ◽  
...  

A novel format of the microtitre plate equipped with magnetic inserts allows rapid and cost-effective development of the controlled release materials.


2008 ◽  
Vol 1138 ◽  
Author(s):  
Zhan Liu ◽  
David G. Bucknall ◽  
Mark G. Allen

AbstractThis work presents the study on the recognition and absorption of the water-soluble X-ray contrast medium iodixanol in aqueous solution using synthetic molecularly imprinted polymers (MIPs). A non-covalent imprinting technique was applied to prepare iodixanol-imprinted polymers using 4-vinylpyridine as the functional monomer and ethylene glycol dimethacrylate as the cross-linker. The effects of quantity of iodixanol templates, the crosslink density, and the solvent were studied in terms of the binding capacity and imprint effect of the polymers. UV-vis spectrometric analysis shows that the highest binding capacity achieved is 284 mg iodixanol per gram of dry polymer, which is 8.8 times higher than the binding capacity of the non-imprinted control polymers (NIPs). SEM and BET surface analysis have also been performed to investigate the effect of morphology and porosity on the binding capacities of polymers.


Sensors ◽  
2020 ◽  
Vol 20 (4) ◽  
pp. 996 ◽  
Author(s):  
Feiyun Cui ◽  
Zhiru Zhou ◽  
H. Susan Zhou

Owing to their merits of simple, fast, sensitive, and low cost, electrochemical biosensors have been widely used for the diagnosis of infectious diseases. As a critical element, the receptor determines the selectivity, stability, and accuracy of the electrochemical biosensors. Molecularly imprinted polymers (MIPs) and surface imprinted polymers (SIPs) have great potential to be robust artificial receptors. Therefore, extensive studies have been reported to develop MIPs/SIPs for the detection of infectious diseases with high selectivity and reliability. In this review, we discuss mechanisms of recognition events between imprinted polymers with different biomarkers, such as signaling molecules, microbial toxins, viruses, and bacterial and fungal cells. Then, various preparation methods of MIPs/SIPs for electrochemical biosensors are summarized. Especially, the methods of electropolymerization and micro-contact imprinting are emphasized. Furthermore, applications of MIPs/SIPs based electrochemical biosensors for infectious disease detection are highlighted. At last, challenges and perspectives are discussed.


2020 ◽  
Vol 12 (7) ◽  
pp. 894-911 ◽  
Author(s):  
H. Santos ◽  
R. O. Martins ◽  
D. A. Soares ◽  
A. R. Chaves

Small-scale innovations with MIP applications in chromatography and mass spectrometry methods.


2015 ◽  
Vol 38 (24) ◽  
pp. 4240-4247 ◽  
Author(s):  
Zsanett Dorkó ◽  
Anett Szakolczai ◽  
Tatjana Verbić ◽  
George Horvai

2020 ◽  
Vol 16 (3) ◽  
pp. 196-207 ◽  
Author(s):  
Yeşeren Saylan ◽  
Adil Denizli

Introduction: A molecular imprinting is one of the fascinating modification methods that employ molecules as targets to create geometric cavities for recognition of targets in the polymeric matrix. This method provides a broad versatility to imprint target molecules with different size, three-dimensional structure and physicochemical features. In contrast to the complex and timeconsuming laboratory surface modification procedures, this method offers a rapid, sensitive, inexpensive, easy-to-use, and selective approach for the diagnosis, screening and monitoring disorders. Owing to their unique features such as high selectivity, physical and chemical robustness, high stability, low-cost and reusability of this method, molecularly imprinted polymers have become very attractive materials and been applied in various applications from separation to detection. Background: The aims of this review are structured according to the fundamentals of molecularly imprinted polymers involving essential elements, preparation procedures and also the analytical applications platforms. Finally, the future perspectives to increase the development of molecularly imprinted platforms. Methods: A molecular imprinting is one of the commonly used modification methods that apply target as a recognition element itself and provide a wide range of versatility to replica other targets with a different structure, size, and physicochemical features. A rapid, easy, cheap and specific recognition approach has become one of the investigation areas on, especially biochemistry, biomedicine and biotechnology. In recent years, several technologies of molecular imprinting method have gained prompt development according to continuous use and improvement of traditional polymerization techniques. Results: The molecularly imprinted polymers with excellent performances have been prepared and also more exciting and universal applications have been recognized. In contrast to the conventional methods, the imprinted systems have superior advantages including high stability, relative ease and low cost of preparation, resistance to elevated temperature, and pressure and potential application to various target molecules. In view of these considerations, molecularly imprinted systems have found application in various fields of analytical chemistry including separation, purification, detection and spectrophotometric systems. Conclusion: Recent analytical methods are reported to develop the binding kinetics of imprinted systems by using the development of other technologies. The combined platforms are among the most encouraging systems to detect and recognize several molecules. The diversity of molecular imprinting methods was overviewed for different analytical application platforms. There is still a requirement of more knowledge on the molecular features of these polymers. A next step would further be the optimization of different systems with more homogeneous and easily reachable recognition sites to reduce the laborious in the accessibility in the three-dimensional polymeric materials in sufficient recognition features and also better selectivity and sensitivity for a wide range of molecules.


Sign in / Sign up

Export Citation Format

Share Document