scholarly journals Sequence Dependent Repair of 1,N6-Ethenoadenine by DNA Repair Enzymes ALKBH2, ALKBH3, and AlkB

Molecules ◽  
2021 ◽  
Vol 26 (17) ◽  
pp. 5285
Author(s):  
Rui Qi ◽  
Ke Bian ◽  
Fangyi Chen ◽  
Qi Tang ◽  
Xianhao Zhou ◽  
...  

Mutation patterns of DNA adducts, such as mutational spectra and signatures, are useful tools for diagnostic and prognostic purposes. Mutational spectra of carcinogens derive from three sources: adduct formation, replication bypass, and repair. Here, we consider the repair aspect of 1,N6-ethenoadenine (εA) by the 2-oxoglutarate/Fe(II)-dependent AlkB family enzymes. Specifically, we investigated εA repair across 16 possible sequence contexts (5′/3′ flanking base to εA varied as G/A/T/C). The results revealed that repair efficiency is altered according to sequence, enzyme, and strand context (ss- versus ds-DNA). The methods can be used to study other aspects of mutational spectra or other pathways of repair.

Biomarkers ◽  
2000 ◽  
Vol 5 (3) ◽  
pp. 235-239 ◽  
Author(s):  
Masayoshi Ichiba ◽  
Yanping Wang ◽  
Jiusong Zhang ◽  
Minako Iyadomi ◽  
Masafumi Enoki ◽  
...  

2020 ◽  
Vol 401 (12) ◽  
pp. 1487-1493
Author(s):  
Stephan Kiontke ◽  
Tanja Göbel ◽  
Annika Brych ◽  
Alfred Batschauer

AbstractDrosophila, Arabidopsis, Synechocystis, human (DASH)-type cryptochromes (cry-DASHs) form one subclade of the cryptochrome/photolyase family (CPF). CPF members are flavoproteins that act as DNA-repair enzymes (DNA-photolyases), or as ultraviolet(UV)-A/blue light photoreceptors (cryptochromes). In mammals, cryptochromes are essential components of the circadian clock feed-back loop. Cry-DASHs are present in almost all major taxa and were initially considered as photoreceptors. Later studies demonstrated DNA-repair activity that was, however, restricted to UV-lesions in single-stranded DNA. Very recent studies, particularly on microbial organisms, substantiated photoreceptor functions of cry-DASHs suggesting that they could be transitions between photolyases and cryptochromes.


Author(s):  
Errol C. Friedberg ◽  
Kern H. Cook ◽  
James Duncan ◽  
Kristien Mortelmans

eLife ◽  
2015 ◽  
Vol 4 ◽  
Author(s):  
Stephanie J Papp ◽  
Anne-Laure Huber ◽  
Sabine D Jordan ◽  
Anna Kriebs ◽  
Madelena Nguyen ◽  
...  

The circadian transcriptional repressors cryptochrome 1 (Cry1) and 2 (Cry2) evolved from photolyases, bacterial light-activated DNA repair enzymes. In this study, we report that while they have lost DNA repair activity, Cry1/2 adapted to protect genomic integrity by responding to DNA damage through posttranslational modification and coordinating the downstream transcriptional response. We demonstrate that genotoxic stress stimulates Cry1 phosphorylation and its deubiquitination by Herpes virus associated ubiquitin-specific protease (Hausp, a.k.a Usp7), stabilizing Cry1 and shifting circadian clock time. DNA damage also increases Cry2 interaction with Fbxl3, destabilizing Cry2. Thus, genotoxic stress increases the Cry1/Cry2 ratio, suggesting distinct functions for Cry1 and Cry2 following DNA damage. Indeed, the transcriptional response to genotoxic stress is enhanced in Cry1−/− and blunted in Cry2−/− cells. Furthermore, Cry2−/− cells accumulate damaged DNA. These results suggest that Cry1 and Cry2, which evolved from DNA repair enzymes, protect genomic integrity via coordinated transcriptional regulation.


2019 ◽  
Vol 75 (a1) ◽  
pp. a327-a327
Author(s):  
Brian E. Eckenroth ◽  
Ash Prakash ◽  
Brittany L. Carroll ◽  
Joann B. Sweasy ◽  
Sylvie Doublié

2003 ◽  
Vol 6 (2) ◽  
pp. 86-95 ◽  
Author(s):  
Yoshihiko Kitajima ◽  
Kohji Miyazaki ◽  
Shiroh Matsukura ◽  
Masayuki Tanaka ◽  
Mutsuo Sekiguchi

Sign in / Sign up

Export Citation Format

Share Document