scholarly journals Recent Advances about the Applications of Click Reaction in Chemical Proteomics

Molecules ◽  
2021 ◽  
Vol 26 (17) ◽  
pp. 5368
Author(s):  
Tingting Yao ◽  
Xiaowei Xu ◽  
Rong Huang

Despite significant advances in biological and analytical approaches, a comprehensive portrait of the proteome and its dynamic interactions and modifications remains a challenging goal. Chemical proteomics is a growing area of chemical biology that seeks to design small molecule probes to elucidate protein composition, distribution, and relevant physiological and pharmacological functions. Click chemistry focuses on the development of new combinatorial chemical methods for carbon heteroatom bond (C-X-C) synthesis, which have been utilized extensively in the field of chemical proteomics. Click reactions have various advantages including high yield, harmless by-products, and simple reaction conditions, upon which the molecular diversity can be easily and effectively obtained. This paper reviews the application of click chemistry in proteomics from four aspects: (1) activity-based protein profiling, (2) enzyme-inhibitors screening, (3) protein labeling and modifications, and (4) hybrid monolithic column in proteomic analysis.

2014 ◽  
Vol 21 (13) ◽  
pp. 1467-1477 ◽  
Author(s):  
P. Fabbrizzi ◽  
G. Menchi ◽  
A. Guarna ◽  
A. Trabocchi

2014 ◽  
Vol 5 (13) ◽  
pp. 4002-4008 ◽  
Author(s):  
Hong Du ◽  
Guangyu Zha ◽  
Lilong Gao ◽  
Huan Wang ◽  
Xiaodong Li ◽  
...  

Novel biodegradable antimicrobial hydrogels, which are promising for use as biomaterials, were prepared facilely via a thiol–ene “click” reaction under human physiological conditions using multifunctional poly(ethylene glycol) (PEG) derivatives as precursors.


Plant Methods ◽  
2020 ◽  
Vol 16 (1) ◽  
Author(s):  
Oindrila Bhattacharya ◽  
Irma Ortiz ◽  
Linda L. Walling

Abstract Background Chloroplasts are critical organelles that perceive and convey metabolic and stress signals to different cellular components, while remaining the seat of photosynthesis and a metabolic factory. The proteomes of intact leaves, chloroplasts, and suborganellar fractions of plastids have been evaluated in the model plant Arabidopsis, however fewer studies have characterized the proteomes of plastids in crops. Tomato (Solanum lycopersicum) is an important world-wide crop and a model system for the study of wounding, herbivory and fruit ripening. While significant advances have been made in understanding proteome and metabolome changes in fruit ripening, far less is known about the tomato chloroplast proteome or its subcompartments. Results With the long-term goal of understanding chloroplast proteome dynamics in response to stress, we describe a high-yielding method to isolate intact tomato chloroplasts and stromal proteins for proteomic studies. The parameters that limit tomato chloroplast yields were identified and revised to increase yields. Compared to published data, our optimized method increased chloroplast yields by 6.7- and 4.3-fold relative to published spinach and Arabidopsis leaf protocols, respectively; furthermore, tomato stromal protein yields were up to 79-fold higher than Arabidopsis stromal proteins yields. We provide immunoblot evidence for the purity of the stromal proteome isolated using our enhanced methods. In addition, we leverage our nanoliquid chromatography tandem mass spectrometry (nanoLC–MS/MS) data to assess the quality of our stromal proteome. Using strict criteria, proteins detected by 1 peptide spectral match, by one peptide, or were sporadically detected were designated as low-level contaminating proteins. A set of 254 proteins that reproducibly co-isolated with the tomato chloroplast stroma were identified. The subcellular localization, frequency of detection, normalized spectral abundance, and functions of the co-isolating proteins are discussed. Conclusions Our optimized method for chloroplast isolation increased the yields of tomato chloroplasts eightfold enabling the proteomics analysis of the chloroplast stromal proteome. The set of 254 proteins that co-isolate with the chloroplast stroma provides opportunities for developing a better understanding of the extensive and dynamic interactions of chloroplasts with other organelles. These co-isolating proteins also have the potential for expanding our knowledge of proteins that are co-localized in multiple subcellular organelles.


2001 ◽  
Vol 2 (3) ◽  
pp. 155-168 ◽  
Author(s):  
Oliver Fiehn

Now that complete genome sequences are available for a variety of organisms, the elucidation of gene functions involved in metabolism necessarily includes a better understanding of cellular responses upon mutations on all levels of gene products, mRNA, proteins, and metabolites. Such progress is essential since the observable properties of organisms – the phenotypes – are produced by the genotype in juxtaposition with the environment. Whereas much has been done to make mRNA and protein profiling possible, considerably less effort has been put into profiling the end products of gene expression, metabolites. To date, analytical approaches have been aimed primarily at the accurate quantification of a number of pre-defined target metabolites, or at producing fingerprints of metabolic changes without individually determining metabolite identities. Neither of these approaches allows the formation of an in-depth understanding of the biochemical behaviour within metabolic networks. Yet, by carefully choosing protocols for sample preparation and analytical techniques, a number of chemically different classes of compounds can be quantified simultaneously to enable such understanding. In this review, the terms describing various metabolite-oriented approaches are given, and the differences among these approaches are outlined. Metabolite target analysis, metabolite profiling, metabolomics, and metabolic fingerprinting are considered. For each approach, a number of examples are given, and potential applications are discussed.


2018 ◽  
Vol 148 ◽  
pp. 11004 ◽  
Author(s):  
Andrei P. Khomenko ◽  
Sergey K. Kargapoltsev ◽  
Andrey V. Eliseev

The article deals with the development of mathematical models and evaluation criteria of the vibration field in the dynamic interactions of the elements of the vibrational technological machines for the processes of vibrational strengthening of long-length parts with help of a steel balls working medium. The study forms a theoretical understanding of the modes of motions of material particles in interaction with a vibrating surface of the working body of the vibration machine. The generalized approach to the assessment of the dynamic quality of the work of vibrating machines in multiple modes of tossing, when the period of free flight of particles is a multiple of the period of the surface oscillations of the working body, is developed in the article. For the correction of vibration field of the working body, the characteristics of dynamic interactions of granular elements of the medium are taken into account using original sensors. The sensors that can detect different particularities of interaction of the granular medium elements at different points of the working body are proposed to evaluate the deviation from a homogeneous and one-dimensional mode of vibration field. Specially developed sensors are able to register interactions between a single granule, a system of granules in filamentous structures, and multipoint interactions of the elements in a close-spaced cylindrical structure. The system of regularization of the structure of vibration fields based on the introduction of motion translation devices is proposed using the multi-point sensor locations on the working body. The article refers to analytical approaches of the theory of vibration displacements. For the experimental data assessment, the methods of statistical analysis are applied. It is shown that the peculiar features of the motion of granular medium registered by the sensors can be used to build active control systems of field vibration.


2018 ◽  
Vol 9 (29) ◽  
pp. 4036-4043 ◽  
Author(s):  
Lue Xiang ◽  
Zi Li ◽  
Jian'an Liu ◽  
Jiqiang Chen ◽  
Minghui Zhang ◽  
...  

Self-accelerating click chemistry was used to prepare sequence-controlled periodic polymers with ultrahigh molecular weights or a cyclic molecular topology.


Synthesis ◽  
2019 ◽  
Vol 52 (05) ◽  
pp. 673-687 ◽  
Author(s):  
Yan-Ping Meng ◽  
Shi-Meng Wang ◽  
Wan-Yin Fang ◽  
Zhi-Zhong Xie ◽  
Jing Leng ◽  
...  

The sulfur(VI) fluoride exchange reaction (SuFEx), developed by Sharpless and co-workers in 2014, is a new category of click reaction that creates molecular connections with absolute reliability and unprecedented efficiency through a sulfur(VI) hub. Ethenesulfonyl fluoride (ESF), as one of the most important sulfur(VI) hubs, exhibits extraordinary reactivity in SuFEx click chemistry and organic synthesis. This review summarizes the chemical properties and applications of ESF in click chemistry, organic chemistry, materials science, medicinal chemistry and in many other fields related to organic synthesis.1 Introduction2 Chemical Transformations of ESF3 Chemical Transformations of 2-Arylethenesulfonyl Fluorides4 Novel SuFEx Reagents Derived from ESF5 Applications of ESF Derivatives in Medicinal Chemistry6 Applications of ESF Derivatives in Materials Science7 Conclusion


2014 ◽  
Vol 881-883 ◽  
pp. 414-418
Author(s):  
Ru Chun Yang ◽  
Tao Hu ◽  
Ban Peng Cao ◽  
Xi Chen ◽  
Qiang Xiao

A series of carbohydrate-conjugated 4-methylumbelliferone were synthesized using 1,3-dipolar cycloaddition “click chemistry” of the azide and alkyne. The reaction is straight forward and in high yield. The strategy will be useful for synthesizing glycoconjugated derivatives of natural products.


RSC Advances ◽  
2017 ◽  
Vol 7 (59) ◽  
pp. 37474-37477 ◽  
Author(s):  
Youssef El Aziz ◽  
Nazia Mehrban ◽  
Peter G. Taylor ◽  
Martin A. Birchall ◽  
James Bowen ◽  
...  

A novel alkyne-terminated cubic-octameric POSS was synthesised in high yield and click chemistry has been used to attach bio-oligomers.


2004 ◽  
Vol 126 (40) ◽  
pp. 12809-12818 ◽  
Author(s):  
Roman Manetsch ◽  
Antoni Krasiński ◽  
Zoran Radić ◽  
Jessica Raushel ◽  
Palmer Taylor ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document