scholarly journals Catalytic Oxidation of CO and Benzene over Metal Nanoparticles Loaded on Hierarchical MFI Zeolite

Molecules ◽  
2021 ◽  
Vol 26 (19) ◽  
pp. 5893
Author(s):  
Totka Todorova ◽  
Petya Petrova ◽  
Yuri Kalvachev

In order to obtain highly active catalytic materials for oxidation of carbon monoxide and volatile organic compounds (VOCs), monometallic platinum, copper, and palladium catalysts were prepared by using of two types of ZSM-5 zeolite as supports—parent ZSM-5 and the same one treated by HF and NH4F buffer solution. The catalyst samples, obtained by loading of platinum, palladium, and copper on ZSM-5 zeolite treated using HF and NH4F buffer solution, were more active in the reaction of CO and benzene oxidation compared with catalyst samples containing untreated zeolite. The presence of secondary mesoporosity played a positive role in increasing the catalytic activity due to improved reactant diffusion. The only exception was the copper catalysts in the reaction of CO oxidation, in which case the catalyst, based on untreated ZSM-5 zeolite, was more active. In this specific case, the key role is played by the oxidative state of copper species loaded on the ZSM-5 zeolites.

Catalysts ◽  
2019 ◽  
Vol 10 (1) ◽  
pp. 24 ◽  
Author(s):  
Yaqing Cen ◽  
Yuxue Yue ◽  
Saisai Wang ◽  
Jinyue Lu ◽  
Bolin Wang ◽  
...  

Adsorption and activation for substrates and the stability of Pd species in Pd-based catalysts are imperative for their wider adoption in industrial and practical applications. However, the influence factor of these aspects has remained unclear. This indicates a need to understand the various perceptions of the structure–function relationship that exists between microstructure and catalytic performance. Herein, we revisit the catalytic performance of supported-ionic-liquid-phase stabilized Pd-based catalysts with nitrogen-containing ligands as a promoter for acetylene hydrochlorination, and try to figure out their regulation. We found that the absolute value of the differential energy, |Eads(C2H2)-Eads(HCl)|, is negative correlated with the stability of palladium catalysts. These findings imply that the optimization of the electron structure provides a new strategy for designing highly active yet durable Pd-based catalysts.


2016 ◽  
Vol 92 ◽  
pp. 60-67 ◽  
Author(s):  
Mehdi D. Esrafili ◽  
Parisa Nematollahi ◽  
Roghaye Nurazar

MRS Advances ◽  
2017 ◽  
Vol 3 (23) ◽  
pp. 1277-1284 ◽  
Author(s):  
Sujat Sen ◽  
McLain Leonard ◽  
Rajeswaran Radhakrishnan ◽  
Stephen Snyder ◽  
Brian Skinn ◽  
...  

ABSTRACTThis paper discusses a pulse electroplating method for preparing copper (Cu)-coated gas diffusion electrodes (GDEs) for the electrochemical conversion of carbon dioxide (CO2) to hydrocarbons such as ethylene. Ionomer coating and air-plasma surface pre-treatments were explored as means of hydrophilizing the carbon surface to enable adhesion of electrodeposited material. The pulsed-current electrodeposition method used successfully generated copper and copper oxide micro- and nano-particles on the prepared surfaces. Copper(I) species identified on the ionomer-treated GDEs are presumed to be highly active for the selective generation of ethylene as compared to other gaseous byproducts of CO2 reduction. Conversely, copper catalysts deposited onto plasma-treated GDEs were found to have poor activity for hydrocarbon production, likely due to substantial metallic character. Of note, plasma treatment of an ionomer-treated GDE after copper plating yielded further improvements in catalytic activity and durability towards ethylene production.


Sign in / Sign up

Export Citation Format

Share Document