scholarly journals Advances in Skin Wound and Scar Repair by Polymer Scaffolds

Molecules ◽  
2021 ◽  
Vol 26 (20) ◽  
pp. 6110
Author(s):  
Shuiqing Zhou ◽  
Qiusheng Wang ◽  
Ao Huang ◽  
Hongdou Fan ◽  
Shuqin Yan ◽  
...  

Scars, as the result of abnormal wound-healing response after skin injury, may lead to loss of aesthetics and physical dysfunction. Current clinical strategies, such as surgical excision, laser treatment, and drug application, provide late remedies for scarring, yet it is difficult to eliminate scars. In this review, the functions, roles of multiple polymer scaffolds in wound healing and scar inhibition are explored. Polysaccharide and protein scaffolds, an analog of extracellular matrix, act as templates for cell adhesion and migration, differentiation to facilitate wound reconstruction and limit scarring. Stem cell-seeded scaffolds and growth factors-loaded scaffolds offer significant bioactive substances to improve the wound healing process. Special emphasis is placed on scaffolds that continuously release oxygen, which greatly accelerates the vascularization process and ensures graft survival, providing convincing theoretical support and great promise for scarless healing.

Molecules ◽  
2021 ◽  
Vol 26 (9) ◽  
pp. 2554
Author(s):  
Marek Konop ◽  
Anna K. Laskowska ◽  
Mateusz Rybka ◽  
Ewa Kłodzińska ◽  
Dorota Sulejczak ◽  
...  

Impaired wound healing is a major medical challenge, especially in diabetics. Over the centuries, the main goal of tissue engineering and regenerative medicine has been to invent biomaterials that accelerate the wound healing process. In this context, keratin-derived biomaterial is a promising candidate due to its biocompatibility and biodegradability. In this study, we evaluated an insoluble fraction of keratin containing casomorphin as a wound dressing in a full-thickness surgical skin wound model in mice (n = 20) with iatrogenically induced diabetes. Casomorphin, an opioid peptide with analgesic properties, was incorporated into keratin and shown to be slowly released from the dressing. An in vitro study showed that keratin-casomorphin dressing is biocompatible, non-toxic, and supports cell growth. In vivo experiments demonstrated that keratin-casomorphin dressing significantly (p < 0.05) accelerates the whole process of skin wound healing to the its final stage. Wounds covered with keratin-casomorphin dressing underwent reepithelization faster, ending up with a thicker epidermis than control wounds, as confirmed by histopathological and immunohistochemical examinations. This investigated dressing stimulated macrophages infiltration, which favors tissue remodeling and regeneration, unlike in the control wounds in which neutrophils predominated. Additionally, in dressed wounds, the number of microhemorrhages was significantly decreased (p < 0.05) as compared with control wounds. The dressing was naturally incorporated into regenerating tissue during the wound healing process. Applied keratin dressing favored reconstruction of more regular skin structure and assured better cosmetic outcome in terms of scar formation and appearance. Our results have shown that insoluble keratin wound dressing containing casomorphin supports skin wound healing in diabetic mice.


2020 ◽  
Author(s):  
Daisuke Ito ◽  
Hiroyasu Ito ◽  
Takayasu Ideta ◽  
Ayumu Kanbe ◽  
Soranobu Ninomiya ◽  
...  

Abstract Background The skin wound healing process is regulated by various cytokines, chemokines, and growth factors. Recent reports have demonstrated that spermine/spermidine (SPD) promote wound healing through urokinase-type plasminogen activator (uPA)/uPA receptor (uPAR) signaling in vitro. Here, we investigated whether the systemic and topical administration of SPD would accelerate the skin wound-repair process in vivo.Methods A skin wound repair model was established using C57BL/6 J mice. SPD was mixed with white petrolatum for topical administration. For systemic administration, SPD mixed with drinking water was orally administered. Changes in wound size over time were calculated using digital photography.Results Systemic and topical SPD treatment significantly accelerated skin wound healing. The administration of SPD promoted the uPA/uPAR pathway in wound sites. Moreover, topical treatment with SPD enhanced the expression of IL-6 and TNF-α in wound sites. Scratch and cell proliferation assays revealed that SPD administration accelerated scratch wound closure and cell proliferation in vitro.Conclusion These results indicate that treatment with SPD promotes skin wound healing through activation of the uPA/uPAR pathway and induction of the inflammatory response in wound sites. The administration of SPD might contribute to new effective treatments to accelerate skin wound healing.


2019 ◽  
Vol In Press (In Press) ◽  
Author(s):  
Roghaye Savari ◽  
Mohammad Shafiei ◽  
Hamid Galehdari ◽  
Mahnaz Kesmati

2014 ◽  
Vol 23 (7) ◽  
pp. 480-485 ◽  
Author(s):  
Hana Jin ◽  
Jihye Seo ◽  
So Young Eun ◽  
Young Nak Joo ◽  
Sang Won Park ◽  
...  

2018 ◽  
Vol 19 (10) ◽  
pp. 3025 ◽  
Author(s):  
Hyeon-Ki Jang ◽  
Jin Oh ◽  
Gun-Jae Jeong ◽  
Tae-Jin Lee ◽  
Gwang-Bum Im ◽  
...  

Electrical stimulation (ES) is known to affect the wound healing process by modulating skin cell behaviors. However, the conventional clinical devices that can generate ES for promoting wound healing require patient hospitalization due to large-scale of the extracorporeal devices. Herein, we introduce a disposable photovoltaic patch that can be applied to skin wound sites to control cellular microenvironment for promoting wound healing by generating ES. In vitro experiment results show that exogenous ES could enhance cell migration, proliferation, expression of extracellular matrix proteins, and myoblast differentiation of fibroblasts which are critical for wound healing. Our disposable photovoltaic patches were attached to the back of skin wound induced mice. Our patch successfully provided ES, generated by photovoltaic energy harvested from the organic solar cell under visible light illumination. In vivo experiment results show that the patch promoted cutaneous wound healing via enhanced host-inductive cell proliferation, cytokine secretion, and protein synthesis which is critical for wound healing process. Unlike the current treatments for wound healing that engage passive healing processes and often are unsuccessful, our wearable photovoltaic patch can stimulate regenerative activities of endogenous cells and actively contribute to the wound healing processes.


2018 ◽  
Vol 38 (2) ◽  
Author(s):  
Zhen-han Deng ◽  
Jian-jian Yin ◽  
Wei Luo ◽  
Ronak Naveenchandra Kotian ◽  
Shan-shan Gao ◽  
...  

Chronic nonhealing wounds pose a significant challenge to healthcare system because of its tremendous utilization of resources and time to heal. It has a well-deserved reputation for reducing the quality of life for those affected and represent a substantial economic burden to the healthcare system overall. Earthworms are used as a traditional Chinese medicine, and have been applied pharmacologically and clinically since a long time in China. However, there is paucity in data regarding its wound healing effects. Therefore, we investigated the effect of earthworm extract (EE) on skin wound healing process. The obtained data showed that EE has healing effects on local wound of mice. It decreased the wound healing time and reduced the ill-effects of inflammation as determined by macroscopic, histopathologic, hematologic, and immunohistochemistry parameters. The potential mechanism could be accelerated hydroxyproline and transforming growth factor-β secretion—thus increasing the synthesis of collagen, promoting blood capillary, and fibroblast proliferation. It could accelerate the removal of necrotic tissue and foreign bodies by speeding up the generation of interleukin-6, white blood cells, and platelets. It thus enhances immunity, reduces the risk of infection, and promotes wound healing. All in all, the obtained data demonstrated that EE improves quality of healing and could be used as a propitious wound healing agent.


2012 ◽  
Vol 57 (No. 2) ◽  
pp. 77-82 ◽  
Author(s):  
F. Sabol ◽  
L. Dancakova ◽  
P. Gal ◽  
T. Vasilenko ◽  
M. Novotny ◽  
...  

The complexity of the wound healing process, which is still poorly understood, prompted us to perform an immunohistochemical investigation using rat skin as an in vivo model. Fifteen Sprague-Dawley rats were included in the experiment. Two round full thickness wounds, 4 mm in diameter, were made on the backs of all rats. Haematoxylin and eosin basic staining as well as antibodies against wide spectrum keratin, keratin 10, keratin&nbsp;14, &alpha;-smooth muscle actin, vimentin, fibronectin, collagens Type 1 and 3, and the transcription factor Sox-2 were applied to paraffin and frozen sections of skin wound specimens two, six and fourteen days after surgery, respectively. New hair follicles with Sox-2-positive cells were present after fourteen days; keratin/vimentin positivity was restricted to specimens of day two. Collagen-3 expression prevailed over collagen-1 expression at all evaluated time intervals, except in the uninjured part of the dermis. In conclusion, rat skin wound healing is a dynamic process which can serve as a model for studying phenomena such as cell-cell interactions and transitions in vivo.


2019 ◽  
Vol 9 (5) ◽  
pp. 39-42
Author(s):  
Piush Sharma ◽  
Charanjeet Singh

Aim: The purpose of this study was to determine the potential of Schrebera Swietenioides alcohol leaf extract in cream composition in the expression of immunoglobulin CD68 (macrophage) during the wound healing process in the inflammatory stage of mice skin. Materials and Methods: Amount of 12 two-months-old male mice were used between 30 and 40 g. To surgical procedures, wound skin incision was performed 2.0 cm in length until subcutaneous on the paravertebral of each animal. The treatment was carried under locally anesthetized with procaine cream. The mice were allotted into four groups of each, entire surface of each group wound covered by base cream control, sulfadiazine 0.1% cream, alcoholic leaves extract of Schrebera Swietenioides cream 10% and, 15%, respectively. All experiments were performed twice a day for 3 days. The wound healing was assayed in stained histological sections in immunohistochemical of the wounds. CD68 expression was investigated under a microscope. Amount of 12-month-old male mice between 30 and 40 g was used. For surgical procedures, a 2.0 cm skin lesion was also performed under the skin on the vertebrae surrounding each animal. Treatment was performed under local anesthetic with procaine cream. Rats were assigned to four groups each, the entire surface of each group of lesions covered by control cream, 0.1% sulfadiazine cream, alcohol leaf from Schrebera Swietenioides cream respectively at 10% and at 15%. All tests were performed twice a day for 3 days. The lesions were analyzed in sections of tissue with staining of wound immunochemistry. The expression of CD68 was studied under a microscope. Results: The results showed that the cream from the 10% and 15% alcoholic leaves extract of Schrebera Swietenioides revealed moderate immune reaction to CD68 on wound healing. Conclusion: We concluded that the alcoholic leaves extract cream of Schrebera Swietenioides possesses anti-inflammatory activity in wound healing process of mice skin.


Antibiotics ◽  
2021 ◽  
Vol 10 (11) ◽  
pp. 1377
Author(s):  
Oriana Simonetti ◽  
Giulio Rizzetto ◽  
Giulia Radi ◽  
Elisa Molinelli ◽  
Oscar Cirioni ◽  
...  

Among the most common complications of both chronic wound and surgical sites are staphylococcal skin infections, which slow down the wound healing process due to various virulence factors, including the ability to produce biofilms. Furthermore, staphylococcal skin infections are often caused by methicillin-resistant Staphylococcus aureus (MRSA) and become a therapeutic challenge. The aim of this narrative review is to collect the latest evidence on old and new anti-staphylococcal therapies, assessing their anti-biofilm properties and their effect on skin wound healing. We considered antibiotics, quorum sensing inhibitors, antimicrobial peptides, topical dressings, and antimicrobial photo-dynamic therapy. According to our review of the literature, targeting of biofilm is an important therapeutic choice in acute and chronic infected skin wounds both to overcome antibiotic resistance and to achieve better wound healing.


Sign in / Sign up

Export Citation Format

Share Document