scholarly journals ICP-MS Measurement of Trace and Rare Earth Elements in Beach Placer-Deposit Soils of Odisha, East Coast of India, to Estimate Natural Enhancement of Elements in the Environment

Molecules ◽  
2021 ◽  
Vol 26 (24) ◽  
pp. 7510
Author(s):  
Nimelan Veerasamy ◽  
Sarata Kumar Sahoo ◽  
Rajamanickam Murugan ◽  
Sharayu Kasar ◽  
Kazumasa Inoue ◽  
...  

Inductively coupled plasma mass spectrometry (ICP-MS) has been used to measure the concentration of trace and rare earth elements (REEs) in soils. Geochemical certified reference materials such as JLk-1, JB-1, and JB-3 were used for the validation of the analytical method. The measured values were in good agreement with the certified values for all the elements and were within 10% analytical error. Beach placer deposits of soils mainly from Odisha, on the east coast of India, have been selected to study selected trace and rare earth elements (REEs), to estimate enrichment factor (EF) and geoaccumulation index (Igeo) in the natural environment. Enrichment factor (EF) and geoaccumulation index (Igeo) results showed that Cr, Mn, Fe, Co, Zn, Y, Zr, Cd and U were significantly enriched, and Th was extremely enriched. The total content of REEs (ƩREEs) ranged from 101.3 to 12,911.3 µg g−1, with an average 2431.1 µg g−1 which was higher than the average crustal value of ΣREEs. A high concentration of Th and light REEs were strongly correlated, which confirmed soil enrichment with monazite minerals. High ratios of light REEs (LREEs)/heavy REEs (HREEs) with a strong negative Eu anomaly revealed a felsic origin. The comparison of the chondrite normalized REE patterns of soil with hinterland rocks such as granite, charnockite, khondalite and migmatite suggested that enhancement of trace and REEs are of natural origin.

Nukleonika ◽  
2017 ◽  
Vol 62 (3) ◽  
pp. 199-211 ◽  
Author(s):  
Rajmund S. Dybczyński ◽  
Zbigniew Samczyński ◽  
Iwona Bartosiewicz ◽  
Krzysztof Kulisa ◽  
Halina Polkowska-Motrenko ◽  
...  

Abstract Two new group separation schemes, based on ion exchange chromatography, for the selective and quantitative isolation of rare earth elements (REE) from accompanying elements, were devised. After checking their performance with the aid of radioactive tracers, the schemes were further used together with ICP-MS, NAA and ion exchange chromatography for the determination of Sc, Y, La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb and Lu in two certified reference materials (CRMs). The results were compared with another series of analyses, where the REEs were determined directly, i.e. without pre-separation, by instrumental neutron activation analysis (INAA) and inductively coupled plasma mass spectrometry (ICP-MS). It was demonstrated that while direct INAA and ICP-MS in most instances provide reliable results for the majority of REEs, for some elements, notably Sc, Yb and Tm in the cases of ICP-MS and INAA, respectively, systematic errors occur or may potentially occur.


1995 ◽  
Vol 51 (3) ◽  
pp. 312-318 ◽  
Author(s):  
M. Barbaro ◽  
B. Passariello ◽  
S. Quaresima ◽  
A. Casciello ◽  
A. Marabini

2012 ◽  
Vol 2012 ◽  
pp. 1-5 ◽  
Author(s):  
Alexander Soin ◽  
Tatiana Maryutina ◽  
Natalya Musina ◽  
Andrey Soin

A novel approach of rare earth elements (REE) determination in crude oil is suggested. Special application of countercurrent chromatography (CCC) is used as a sample pretreatment tool. An oil sample is continuously pumped through the rotating coil column (RCC) as a mobile phase, while an aqueous phase (nitric acid solution) is retained as a stationary phase. Two phases are kept well mixed and agitated, but there is no emulsion at the interface under the chosen conditions. Special features of CCC give an opportunity to vary the volume of oil samples to be analyzed from 10 mL to 1 L or more. Trace metals are preconcentrated into 10 mL of stationary phase (acidic solutions) pumped out of the column so that analysis can be easily determined with inductively coupled plasma mass spectrometry (ICP-MS) without additional sample preparation procedures. Optimal concentration of nitric acid in the stationary phase for preconcentration of REE from oil by CCC has been investigated. The combination of CCC with ICP-MS gives the possibility to develop a rapid, reliable, and accurate method of trace metal including rare earth elements (REE) determination in crude oils and oil products. Such method could be an alternative for unexpanded and expensive neutron-activation analysis (NAA).


Minerals ◽  
2020 ◽  
Vol 10 (1) ◽  
pp. 55 ◽  
Author(s):  
Veronica C. Bradley ◽  
Benjamin T. Manard ◽  
Benjamin D. Roach ◽  
Shalina C. Metzger ◽  
Kayron T. Rogers ◽  
...  

The determination of trace elements, particularly rare earth elements, in uranium ore concentrates (UOCs) is important as the pattern can be indictive ore characteristics. Presented here is a methodology for accurately quantifying rare earth elements (REE) in UOCs. To improve the measurement uncertainty, isotope dilution mass spectrometry (IDMS) was utilized over other quantification techniques such as external calibration or standard addition. The isotopic determinations were measured by inductively coupled plasma-mass spectrometry (ICP-MS). To obtain high-fidelity isotopic measurements, separation of the REE from the uranium matrix was achieved by high-performance ion chromatography (HPIC), reducing the isobaric interferences. After separation, the target analytes were analyzed in two different modalities. For high precision analysis, the separated analytes were collected and measured by ICP-MS in an “offline” fashion. For a rapid approach, the separated analytes were sent directly into an ICP-MS for “online” analysis. These methods have been demonstrated to accurately quantify the REE content in a well-characterized UOC sample.


Molecules ◽  
2020 ◽  
Vol 25 (21) ◽  
pp. 5178 ◽  
Author(s):  
Sharayu Kasar ◽  
Rajamanickam Murugan ◽  
Hideki Arae ◽  
Tatsuo Aono ◽  
Sarata Kumar Sahoo

Two different digestion methods—microwave digestion (Mw) and Savillex digestion (Sx)—were used to evaluate the best quality control for analysis of the rare earth elements, Th and U in the geochemical certified reference material JSd-2, supplied by the Geological Survey of Japan (GSJ). The analysis of trace elements was carried out using inductively coupled plasma mass spectrometry (ICP-MS). The digestion recovery was > 90% for almost all elements by both methods. Mw-4 (four repeats of the microwave digestion) was found to be more effective and faster than Sx. In order to evaluate the efficiency of Mw-4, three other GSJ certified reference materials, JLk-1, JB-1 and JB-3, as well as five different soil samples from Belarus, Japan, Serbia and Ukraine were also analyzed. The Mw-4 method was seen to be promising for complete digestion and recovery of most of the elements. The U/Th ratio showed some heterogeneity for Ukraine and Serbia soils affected by Chernobyl nuclear power plant accident and depleted uranium contamination, respectively. This method can be successfully applied to any type of soils for elemental analyses.


2021 ◽  
Vol 14 (4) ◽  
pp. 515-526
Author(s):  
Anna A. Kravchenko ◽  
◽  
Irina V. Nikolaeva ◽  
Stanislav V. Palesskiy

Method of microwave digestion using HNO3, HCl and HF in MARS‑5 system followed by ICP-MS analysis is proposed for determination of rare earth elements (REE) in plant materials. Limits of detection are 0.0001–0.001 ppm and allow for determination of all REE in certified reference materials Tr‑1, LB‑1 and EK‑1 and new reference material NSP‑1, relative standard deviations are lower than 13 %.Influence of HF addition during microwave digestion in UltraWAVE system on the ICP-MS analysis of REE in plant materials depending on silica content is studied. Necessity of HF addition during microwave digestion for better REE recoveries is shown for plant materials with Si contents exceeding 0.1 %


Minerals ◽  
2020 ◽  
Vol 10 (5) ◽  
pp. 456 ◽  
Author(s):  
Fan Yu ◽  
Qihai Shu ◽  
Xudong Niu ◽  
Kai Xing ◽  
Linlong Li ◽  
...  

The Xianghualing skarn Sn deposit in the southwestern part of the southern Hunan Metallogenic Belt is a large Sn deposit in the Nanling area. In this paper, the garnet has been analyzed by laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS) to obtain the concentrations of the major and trace elements. The results reveal that the garnets from the Xianghualing deposit mainly belong to andradite-grossular (grandite) solid solution and are typically richer in Al than in Fe. They show enrichment in heavy rare earth elements (HREEs) and notably lower light rare earth elements (LREEs), and commonly negative Eu anomalies, indicative of a relatively reduced formation environment. The garnets have high Sn concentrations between 2313 ppm and 5766 ppm. It is also evident that there is a positive correlation between Sn and Fe, suggesting that Sn4+ substitutes into the garnets through substituting for Fe3+ in the octahedral position. Combined with previous studies, it can be recognized that the Sn concentrations of garnet in skarn Sn deposits are generally high, whereas the W concentrations are relatively low. This is just the opposite in garnets from skarn W deposits that typically have high W, but low Sn concentrations. In polymetallic skarn deposits with both economic Sn and W, the concentrations of both metals in garnets are relatively high, although varying greatly. Therefore, the Sn and W concentrations in garnets can be used to evaluate a skarn deposit’s potential to produce Sn and (or) W mineralization, which is helpful in exploration.


Sign in / Sign up

Export Citation Format

Share Document