scholarly journals Copper(II) Phenanthroline-Based Complexes as Potential AntiCancer Drugs: A Walkthrough on the Mechanisms of Action

Molecules ◽  
2021 ◽  
Vol 27 (1) ◽  
pp. 49
Author(s):  
Sebastiano Masuri ◽  
Petr Vaňhara ◽  
Maria Grazia Cabiddu ◽  
Lukáš Moráň ◽  
Josef Havel ◽  
...  

Copper is an endogenous metal ion that has been studied to prepare a new antitumoral agent with less side-effects. Copper is involved as a cofactor in several enzymes, in ROS production, in the promotion of tumor progression, metastasis, and angiogenesis, and has been found at high levels in serum and tissues of several types of human cancers. Under these circumstances, two strategies are commonly followed in the development of novel anticancer Copper-based drugs: the sequestration of free Copper ions and the synthesis of Copper complexes that trigger cell death. The latter strategy has been followed in the last 40 years and many reviews have covered the anticancer properties of a broad spectrum of Copper complexes, showing that the activity of these compounds is often multi factored. In this work, we would like to focus on the anticancer properties of mixed Cu(II) complexes bearing substituted or unsubstituted 1,10-phenanthroline based ligands and different classes of inorganic and organic auxiliary ligands. For each metal complex, information regarding the tested cell lines and the mechanistic studies will be reported and discussed. The exerted action mechanisms were presented according to the auxiliary ligand/s, the metallic centers, and the increasing complexity of the compound structures.

The Analyst ◽  
2010 ◽  
Vol 135 (1) ◽  
pp. 140-148 ◽  
Author(s):  
Wei Zhang ◽  
Jian-Feng Chen ◽  
Liu-Yin Fan ◽  
Cheng-Xi Cao ◽  
Ji-Cun Ren ◽  
...  

2015 ◽  
Vol 71 (11) ◽  
pp. 1379-1383 ◽  
Author(s):  
Chen Liu ◽  
Khalil A. Abboud

The title compounds, μ-oxalato-κ4O1,O2:O1′,O2′-bis[[4-(2-aminoethyl)-1H-imidazole-κ2N3,N4](azido-κN1)copper(II)], [Cu2(C2O4)(N3)2(C5H9N3)2], (I), and μ-oxalato-κ4O1,O2:O1′,O2′-bis[[4-(2-aminoethyl)-1H-imidazole-κ2N3,N4](dicyanamido-κN1)copper(II)], [Cu2(C2O4)(C2N3)2(C5H9N3)2], (II), are two oxalate-bridged dinuclear copper complexes. Each CuIIion adopts a five-coordinate square-pyramidal coordination sphere where the basal N2O2plane is formed by two O atoms of the oxalate ligand and two N atoms of a bidentate chelating histamine molecule. The apical coordination site in compound (I) is occupied by a monodentate azide anion through one of its terminal N atoms. The apical coordination site in compound (II) is occupied by a monodentate dicyanamide anion through one of its terminal N atoms. The molecules in both structures are centrosymmetric. In the crystals of compounds (I) and (II), the dinuclear complexes are linked through N—H...Xand C—H...X(X= N, O) hydrogen bonds where the donors are provided by the histamine ligand and the acceptor atoms are provided by the azide, dicyanamide, and oxalate ligands. In compound (I), the coordinatively unsaturated copper ions interact with the histamine ligandviaa C—H...Cu interaction. The coordinatively unsaturated copper ions in compound (II) interactviaa weak N...Cu interaction with the dicyanamide ligand of a neighboring molecule. The side chain of the histamine ligand is disordered over three sets of sites in (II).


2019 ◽  
Vol 107 (6) ◽  
pp. 523-529 ◽  
Author(s):  
Mohamad Bekhit ◽  
Asmaa Sobhy ◽  
Zakaria I. Ali ◽  
Sameh M. Gafar

Abstract A novel high-dose dosimeter based on γ radiation reduction of copper ions and formation of copper metal inside polymer matrix were investigated. γ radiation induced synthesis of copper nanoparticles (CuNPs) in poly vinyl alcohol films were studied by UV-Visible Spectrophotometer, X-ray diffraction (XRD) and Fourier Transform Infrared Spectroscopy (FTIR). The optical absorption spectra showed that the Cu/PVA nanocomposite films have surface plasmon resonance (SPR) of copper nanoparticles which depending on irradiation doses. Upon γ irradiation these films turns its color from faint blue to deep reddish brown depending on metal ion concentration. The XRD pattern and FTIR spectrum confirm the formation of the CuNPs. The response of Cu/PVA nanocomposite dosimeters depends on both the irradiation doses and concentration of copper precursor. The dose range for these films was from 50 to 650 kGy, revealing its important applications for high dose dosimetry. Cu/PVA nanocomposites films exhibit good post-irradiation stability in dark and light.


Molecules ◽  
2019 ◽  
Vol 24 (21) ◽  
pp. 3866
Author(s):  
Hojung Choi ◽  
Youngsik Eom ◽  
Sanghwa Lee ◽  
Sang Youl Kim

Micrometer-sized hyperbranched poly(amidoamine) (hPAMAM) particles are prepared with a simple A2B3 type Aza–Michael addition reaction between aminoethylpiperazine (AEP) and methylenebisacrylamide (MBA) in an inverse suspension polymerization condition. The synthesized particles exhibited surprisingly high Cu2+ sorption capacity (0.223g/g) for a solid-type absorbent. In addition to the high sorption ability of the particle, its simple synthetic process and convenience, due to its micrometer-sized spherical shape and recyclability, make it a practical and attractive absorbent for heavy metal ion removal from aqueous solutions.


Viruses ◽  
2020 ◽  
Vol 12 (10) ◽  
pp. 1179 ◽  
Author(s):  
Anne Monette ◽  
Andrew J. Mouland

Liquid-liquid phase separation (LLPS) is a rapidly growing research focus due to numerous demonstrations that many cellular proteins phase-separate to form biomolecular condensates (BMCs) that nucleate membraneless organelles (MLOs). A growing repertoire of mechanisms supporting BMC formation, composition, dynamics, and functions are becoming elucidated. BMCs are now appreciated as required for several steps of gene regulation, while their deregulation promotes pathological aggregates, such as stress granules (SGs) and insoluble irreversible plaques that are hallmarks of neurodegenerative diseases. Treatment of BMC-related diseases will greatly benefit from identification of therapeutics preventing pathological aggregates while sparing BMCs required for cellular functions. Numerous viruses that block SG assembly also utilize or engineer BMCs for their replication. While BMC formation first depends on prion-like disordered protein domains (PrLDs), metal ion-controlled RNA-binding domains (RBDs) also orchestrate their formation. Virus replication and viral genomic RNA (vRNA) packaging dynamics involving nucleocapsid (NC) proteins and their orthologs rely on Zinc (Zn) availability, while virus morphology and infectivity are negatively influenced by excess Copper (Cu). While virus infections modify physiological metal homeostasis towards an increased copper to zinc ratio (Cu/Zn), how and why they do this remains elusive. Following our recent finding that pan-retroviruses employ Zn for NC-mediated LLPS for virus assembly, we present a pan-virus bioinformatics and literature meta-analysis study identifying metal-based mechanisms linking virus-induced BMCs to neurodegenerative disease processes. We discover that conserved degree and placement of PrLDs juxtaposing metal-regulated RBDs are associated with disease-causing prion-like proteins and are common features of viral proteins responsible for virus capsid assembly and structure. Virus infections both modulate gene expression of metalloproteins and interfere with metal homeostasis, representing an additional virus strategy impeding physiological and cellular antiviral responses. Our analyses reveal that metal-coordinated virus NC protein PrLDs initiate LLPS that nucleate pan-virus assembly and contribute to their persistence as cell-free infectious aerosol droplets. Virus aerosol droplets and insoluble neurological disease aggregates should be eliminated by physiological or environmental metals that outcompete PrLD-bound metals. While environmental metals can control virus spreading via aerosol droplets, therapeutic interference with metals or metalloproteins represent additional attractive avenues against pan-virus infection and virus-exacerbated neurological diseases.


2016 ◽  
Vol 2016 ◽  
pp. 1-7 ◽  
Author(s):  
Aminu Musa ◽  
Mansor B. Ahmad ◽  
Mohd Zobir Hussein ◽  
Saiman Mohd Izham ◽  
Kamyar Shameli ◽  
...  

A chemical reduction method was employed for the synthesis of copper nanoparticles stabilized by nanocrystalline cellulose (NCC) using different concentrations of copper salt in aqueous solution under atmospheric air. CuSO4·5H2O salt and hydrazine were used as metal ion precursor and reducing agent, respectively. Ascorbic acid and aqueous NaOH were also used as an antioxidant and a pH moderator, respectively. The number of CuNPs increased with increasing concentration of the precursor salt. The formation of copper nanoparticles stabilized by NCC (CuNPs@NCC) was investigated by UV-visible spectroscopy (UV-vis), where the surface absorption maximum was observed at 590 nm. X-ray diffraction (XRD) analysis showed that the CuNPs@NCC are of a face-centered cubic structure. Moreover, the morphology of the CuNPs@NCC was investigated using transmission electron microscope (TEM) and field emission scanning electron microscope (FESEM), which showed well-dispersed CuNPs with an average particle size less than 4 nm and the shape of CuNPs was found to be spherical. Energy dispersive X-ray spectroscope (EDS) also confirmed the presence of CuNPs on the NCC. The results demonstrate that the stability of CuNPs decreases with an increasing concentration of the copper ions.


2007 ◽  
Vol 2007 ◽  
pp. 1-7 ◽  
Author(s):  
Sulekh Chandra ◽  
Smriti Raizada ◽  
Monika Tyagi ◽  
Archana Gautam

A series of metal complexes of Cu(II) and Ni(II) having the general composition[M(L)X2]with benzil bis(thiosemicarbazone) has been prepared and characterized by element chemical analysis, molar conductance, magnetic susceptibility measurements, and spectral (electronic, IR, EPR, mass) studies. The IR spectral data suggest the involvement of sulphur and azomethane nitrogen in coordination to the central metal ion. On the basis of spectral studies, an octahedral geometry has been assigned for Ni(II) complexes but a tetragonal geometry for Cu(II) complexes. The free ligand and its metal complexes have been tested in vitro against a number of microorganisms in order to assess their antimicrobial properties.


2016 ◽  
Vol 230 (9) ◽  
Author(s):  
Giulia Di Rocco ◽  
Fabrizio Bernini ◽  
Marco Borsari ◽  
Ilaria Martinelli ◽  
Carlo Augusto Bortolotti ◽  
...  

AbstractThe intrinsic fluorescence of recombinant proteins offers a powerful tool to detect and characterize structural changes induced by chemical or biological stimuli. We show that metal-ion binding to a hexahistidine tail can significantly broaden the range of such structurally sensitive fluorescence observables. Bipositive metal-ions as Cu


Sign in / Sign up

Export Citation Format

Share Document