scholarly journals A New Oxygen Containing Pyclen-Type Ligand as a Manganese(II) Binder for MRI and 52Mn PET Applications: Equilibrium, Kinetic, Relaxometric, Structural and Radiochemical Studies

Molecules ◽  
2022 ◽  
Vol 27 (2) ◽  
pp. 371
Author(s):  
Tibor Csupász ◽  
Dániel Szücs ◽  
Ferenc Krisztián Kálmán ◽  
Oldamur Hollóczki ◽  
Anikó Fekete ◽  
...  

A new pyclen-3,9-diacetate derivative ligand (H23,9-OPC2A) was synthesized possessing an etheric O-atom opposite to the pyridine ring, to improve the dissociation kinetics of its Mn(II) complex (pyclen = 3,6,9,15-tetraazabicyclo(9.3.1)pentadeca-1(15),11,13-triene). The new ligand is less basic than the N-containing analogue (H23,9-PC2A) due to the non-protonable O-atom. In spite of its lower basicity, the conditional stability of the [Mn(3,9-OPC2A)] (pMn = −log(Mn(II)), cL = cMn(II) = 0.01 mM. pH = 7.4) remains unaffected (pMn = 8.69), compared to the [Mn(3,9-PC2A)] (pMn = 8.64). The [Mn(3,9-OPC2A)] possesses one water molecule, having a lower exchange rate with bulk solvents (kex298 = 5.3 ± 0.4 ´ 107 s−1) than [Mn(3,9-PC2A)] (kex298 = 1.26´108 s−1). These mild differences are rationalized by density-functional theory (DFT) calculations. The acid assisted dissociation of [Mn(3,9-OPC2A)] is considerably slower (k1 = 2.81 ± 0.07 M−1 s−1) than that of the complexes of diacetates or bisamides of various 12-membered macrocycles and the parent H23,9-PC2A. The [Mn(3,9-OPC2A)] is inert in rat/human serum as confirmed by 52Mn labeling (nM range), as well as by relaxometry (mM range). However, a 600-fold excess of EDTA (pH = 7.4) or a mixture of essential metal ions, propagated some transchelation/transmetalation in 7 days. The H23,9-OPC2A is labeled efficiently with 52Mn at elevated temperatures, yet at 37 °C the parent H23,9-PC2A performs slightly better. Ultimately, the H23,9-OPC2A shows advantageous features for further ligand designs for bifunctional chelators.

Materials ◽  
2021 ◽  
Vol 14 (10) ◽  
pp. 2560
Author(s):  
Jianwen Meng ◽  
Yong Pan ◽  
Fan Yang ◽  
Yanjun Wang ◽  
Zhongyu Zheng ◽  
...  

The thermal stability and decomposition kinetics analysis of 1-alkyl-2,3-dimethylimidazole nitrate ionic liquids with different alkyl chains (ethyl, butyl, hexyl, octyl and decyl) were investigated by using isothermal and nonisothermal thermogravimetric analysis combined with thermoanalytical kinetics calculations (Kissinger, Friedman and Flynn-Wall-Ozawa) and density functional theory (DFT) calculations. Isothermal experiments were performed in a nitrogen atmosphere at 240, 250, 260 and 270 °C. In addition, the nonisothermal experiments were carried out in nitrogen and air atmospheres from 30 to 600 °C with heating rates of 5, 10, 15, 20 and 25 °C/min. The results of two heating modes, three activation energy calculations and density functional theory calculations consistently showed that the thermal stability of 1-alkyl-2,3-dimethylimidazolium nitrate ionic liquids decreases with the increasing length of the alkyl chain of the substituent on the cation, and then the thermal hazard increases. This study could provide some guidance for the safety design and use of imidazolium nitrate ionic liquids for engineering.


2020 ◽  
Vol 19 (07) ◽  
pp. 2050025
Author(s):  
Nadjet Deddouche ◽  
Hafida Chemouri

A comparative theoretical study of the kinetics of the Diels–Alder (DA) reaction between empty fullerene (C[Formula: see text]) and lithium ion encapsulated fullerene ([Formula: see text]) with 1,3 cyclohexadiene (C[Formula: see text]H[Formula: see text]) was carried out. This reaction takes place in a photovoltaic cell. The effect of the encapsulated [Formula: see text] ion on the conversion rate of solar energy into electricity has been highlighted through calculations based on the density functional theory (DFT). In addition, a static study using the global conceptual DFT indices, as part of the demonstration of the significant electrophilic power of the fullerene nanostructure, was carried out to show the effect of encapsulating the [Formula: see text] ion in this nanoparticle on the electrophilic power of Li[Formula: see text]@C[Formula: see text] and therefore on the acceleration of the reaction. The relationship between the HOMOdonor–LUMOacceptor energy difference and the DA reaction acceleration, and therefore the acceleration of light conversion (a rapid conversion implies a small gap), has been thoroughly examined. Moreover, a mechanistic study of the kinetics of the DA reaction of the fullerene involved in an organic photovoltaic cell has been carried out. In this section, a concerted synchronous mechanism with no effect of [Formula: see text] encapsulation on the synchronicity of the reaction was observed. Finally, it was revealed that Li[Formula: see text]@C[Formula: see text] reacted approximately 2466 times faster than C[Formula: see text]. Moreover, the experimental results were found in good agreement with the computer calculations.


2019 ◽  
Vol 116 (9) ◽  
pp. 3419-3424
Author(s):  
Tian Zhou ◽  
Santanu Malakar ◽  
Steven L. Webb ◽  
Karsten Krogh-Jespersen ◽  
Alan S. Goldman

The insertion of CO into metal-alkyl bonds is the key C-C bond-forming step in many of the most important organic reactions catalyzed by transition metal complexes. Polar organic molecules (e.g., tetrahydrofuran) have long been known to promote CO insertion reactions, but the mechanism of their action has been the subject of unresolved speculation for over five decades. Comprehensive computational studies [density functional theory (DFT)] on the prototypical system Mn(CO)5(arylmethyl) reveal that the polar molecules do not promote the actual alkyl migration step. Instead, CO insertion (i.e. alkyl migration) occurs rapidly and reversibly to give an acyl complex with a sigma-bound (agostic) C-H bond that is not easily displaced by typical ligands (e.g. phosphines or CO). The agostic C-H bond is displaced much more readily, however, by the polar promoter molecules, even though such species bind only weakly to the metal center and are themselves then easily displaced; the facile kinetics of this process are attributable to a hydrogen bonding-like interaction between the agostic C-H bond and the polar promoter. The role of the promoter is to thereby catalyze isomerization of the agostic product of CO insertion to give an η2-C,O-bound acyl product that is more easily trapped than the agostic species. This ability of such promoters to displace a strongly sigma-bound C-H bond and to subsequently undergo facile displacement themselves is without reported precedent, and could have implications for catalytic reactions beyond carbonylation.


2011 ◽  
Vol 684 ◽  
pp. 1-29 ◽  
Author(s):  
Peter Entel ◽  
Antje Dannenberg ◽  
Mario Siewert ◽  
Heike C. Herper ◽  
Markus E. Gruner ◽  
...  

The structural and magnetic order are the decisive elements which vastly determine the properties of smart ternary intermetallics such as X2YZ Heusler alloys. Here, X and Y are transition metal elements and Z is an element from the III-V group. In order to give a precise prescription of the possibilities to optimize the magnetic shape memory and magnetocaloric effects of these alloys, we use density functional theory calculations. In particular, we outline how one may find new intermetallics which show higher Curie and martensite transformation temperatures when compared with the prototypical magnetic shape-memory alloy Ni2MnGa. Higher operation temperatures are needed for technological applications at elevated temperatures.


Sign in / Sign up

Export Citation Format

Share Document