scholarly journals Effect of Compressive Prestrain on the Anti-Pressure and Anti-Wear Performance of Monolayer MoS2: A Molecular Dynamics Study

Nanomaterials ◽  
2020 ◽  
Vol 10 (2) ◽  
pp. 275 ◽  
Author(s):  
Ning Kong ◽  
Boyu Wei ◽  
Yuan Zhuang ◽  
Jie Zhang ◽  
Hongbo Li ◽  
...  

The effects of in-plane prestrain on the anti-pressure and anti-wear performance of monolayer MoS2 have been investigated by molecular dynamics simulation. The results show that monolayer MoS2 observably improves the load bearing capacity of Pt substrate. The friction reduction effect depends on the deformation degree of monolayer MoS2. The anti-pressure performance of monolayer MoS2 and Pt substrate is enhanced by around 55.02% when compressive prestrain increases by 4.03% and the anti-wear performance is notably improved as well. The improved capacities for resisting the in-plane tensile and out-of-plane compressive deformation are responsible for the outstanding lubrication mechanism of monolayer MoS2. This study provides guidelines for optimizing the anti-pressure and anti-wear performance of MoS2 and other two-dimension materials which are subjected to the in-plane prestrain.

Author(s):  
Chengzhi Hu ◽  
Dawei Tang ◽  
Jizu Lv ◽  
Minli Bai ◽  
Xiaoliang Zhang

Abstract To reveal the effect of superhydrophobic rough surface on the friction properties, molecular dynamics simulations are used to study the friction properties of Couette flow. In particular, the influence of load on the flow properties is considered in this work. Results show that there is a critical load (Pcrit), and the friction-reduction properties of superhydrophobic surfaces with stripes are only presented when the load is smaller than the Pcrit. With the decrease in the distance between stripes, the Pcrit is increased. Under a low load, the friction force is increased with increasing the distance between stripes. However, under high load condition we observe an opposite trend. The height of stripe has little impacts on the Pcrit.


2019 ◽  
Vol 21 (32) ◽  
pp. 17786-17791 ◽  
Author(s):  
Chengzhi Hu ◽  
Dawei Tang ◽  
Jizu Lv ◽  
Minli Bai ◽  
Xiaoliang Zhang

There was a critical load (Pcrit), such that the friction-reduction of superhydrophobic surfaces appeared only when the load < Pcrit.


2022 ◽  
Vol 12 (2) ◽  
pp. 678
Author(s):  
Lianfei Kuang ◽  
Qiyin Zhu ◽  
Xiangyu Shang ◽  
Xiaodong Zhao

The knowledge of nanoscale mechanical properties of montmorillonite (MMT) with various compensation cations upon hydration is essential for many environmental engineering-related applications. This paper uses a Molecular Dynamics (MD) method to simulate nanoscale elastic properties of hydrated Na-, Cs-, and Ca-MMT with unconstrained system atoms. The variation of basal spacing of MMT shows step characteristics in the initial crystalline swelling stage followed by an approximately linear change in the subsequent osmotic swelling stage as the increasing of interlayer water content. The water content of MMT in the thermodynamic stable-state conditions during hydration is determined by comparing the immersion energy and hydration energy. Under this stable hydration state, the nanoscale elastic properties are further simulated by the constant strain method. Since the non-bonding strength between MMT lamellae is much lower than the boning strength within the mineral structure, the in-plane and out-of-plane strength of MMT has strong anisotropy. Simulated results including the stiffness tensor and linear elastic constants based on the assumption of orthotropic symmetry are all in good agreement with results from the literature. Furthermore, the out-of-plane stiffness tensor components of C33, C44, and C55 all fluctuate with the increase of interlayer water content, which is related to the formation of interlayer H-bonds and atom-free volume ratio. The in-plane stiffness tensor components C11, C22, and C12 decrease nonlinearly with the increase of water content, and these components are mainly controlled by the bonding strength of mineral atoms and the geometry of the hydrated MMT system. Young’s modulus in all three directions exhibits a nonlinear decrease with increasing water content.


2013 ◽  
Vol 25 ◽  
pp. 181-187
Author(s):  
Ming Chao Wang ◽  
Cheng Yan ◽  
Dilini Galpaya ◽  
Zheng Bo Lai ◽  
Lin Ma ◽  
...  

Different types of defects can be introduced into graphene during material synthesis, and significantly influence the properties of graphene. In this work, we investigated the effects of structural defects, edge functionalisation and reconstruction on the fracture strength and morphology of graphene by molecular dynamics simulations. The minimum energy path analysis was conducted to investigate the formation of Stone-Wales defects. We also employed out-of-plane perturbation and energy minimization principle to study the possible morphology of graphene nanoribbons with edge-termination. Our numerical results show that the fracture strength of graphene is dependent on defects and environmental temperature. However, pre-existing defects may be healed, resulting in strength recovery. Edge functionalization can induce compressive stress and ripples in the edge areas of graphene nanoribbons. On the other hand, edge reconstruction contributed to the tensile stress and curved shape in the graphene nanoribbons.


2006 ◽  
Vol 55 (1) ◽  
pp. 1
Author(s):  
Wu Guo-Qiang ◽  
Kong Xian-Ren ◽  
Sun Zhao-Wei ◽  
Wang Ya-Hui

2013 ◽  
Vol 23 ◽  
pp. 43-49 ◽  
Author(s):  
Ming Chao Wang ◽  
Cheng Yan ◽  
Dilini Galpaya ◽  
Zheng Bo Lai ◽  
Lin Ma ◽  
...  

Different types of defects can be introduced into graphene during material synthesis, and significantly influence the properties of graphene. In this work, we investigated the effects of structural defects, edge functionalisation and reconstruction on the fracture strength and morphology of graphene by molecular dynamics simulations. The minimum energy path analysis was conducted to investigate the formation of Stone-Wales defects. We also employed out-of-plane perturbation and energy minimization principle to study the possible morphology of graphene nanoribbons with edge-termination. Our numerical results show that the fracture strength of graphene is dependent on defects and environmental temperature. However, pre-existing defects may be healed, resulting in strength recovery. Edge functionalization can induce compressive stress and ripples in the edge areas of graphene nanoribbons. On the other hand, edge reconstruction contributed to the tensile stress and curved shape in the graphene nanoribbons.


Author(s):  
Hao Zhan ◽  
Xinfeng Tan ◽  
Xin Zhang ◽  
Guoxin Xie ◽  
Dan Guo

Abstract Understanding the relationship of interlayer interaction with mechanical properties and behaviors of two-dimensional layered materials (2DLMs) is critical in favoring the development of related nanodevices, nevertheless, still challenging due to the difficulties in experiments. In this work, nanoindentation simulations on few-layer WS2 were conducted by varying tip radius, suspended membrane radius and membrane size using molecular dynamics simulation. Consistent with our previous experimental results, few-layer WS2 exhibited layer-dependent reduction in fracture strength owing to the uneven stress distribution among individual layer induced by interlayer sliding under out-of-plane deformation. Besides, apparent curve hysteresis was observed due to interlayer sliding in the supported region when large tip radius and membrane radius were employed. However, instead of the supported part, the interlayer sliding within the suspended part resulted in the reduced fracture strength with the increase of layer number. These findings not only provide an in-depth comprehension on the influence of interlayer sliding on the fracture strength of few-layer WS2, but also suggest that the role of interlayer interaction should be seriously considered during nanodevice design.


NANO ◽  
2015 ◽  
Vol 10 (07) ◽  
pp. 1550105 ◽  
Author(s):  
A. Montazeri ◽  
S. Ebrahimi ◽  
A. Rajabpour ◽  
H. Rafii-Tabar

Molecular dynamics simulation is employed to explore the influence of hydrogen adsorption on the stability behavior of graphyne (GY) as a new allotrope of carbon. The strain for the onset of buckling is determined for pristine GY and the results are compared with those for perfect graphene nanoribbons under identical conditions. The results reveal that due to the presence of triple C–C bonds in the GY structure, which are harder to rotate and bend in compression compared to single bonds, the new allotrope is stiffer than graphene during buckling phenomenon. In addition, the effect of hydrogen adsorption on the stability behavior of GY is examined with different H coverage in the range 0–50%. It is concluded that this adsorption promotes a rapid buckling which is attributed to the conversion of the stiff in-plane carbon bonding in the GY structure to the out-of-plane bonding which is weaker and easier to bend in compression. Finally, a critical value of adsorption is found above in which such a trend is not observed.


Sign in / Sign up

Export Citation Format

Share Document