scholarly journals Molecular Linking Selectivity on Self-Assembled Metal-Semiconductor Nano-Hybrid Systems

Nanomaterials ◽  
2020 ◽  
Vol 10 (7) ◽  
pp. 1378
Author(s):  
Thinh Luong The Nguyen ◽  
Alba Gascón Nicolás ◽  
Tomas Edvinsson ◽  
Jie Meng ◽  
Kaibo Zheng ◽  
...  

Plasmonics nanoparticles gained prominence in the last decade in fields of photonics, solar energy conversion and catalysis. It has been shown that anchoring the plasmonics nanoparticles on semiconductors via a molecular linker reduces band bending and increases hot carriers’ lifetime, which is essential for the development of efficient photovoltaic devices and photocatalytic systems. Aminobenzoic acid is a commonly used linker to connect the plasmonic metal to an oxide-based semiconductor. The coordination to the oxide was established to occur via the carboxylic functional group, however, it remains unclear what type of coordination that is established with the metal site. Herein, it is demonstrated that metal is covalently bonded to the linker via the amino group, as supported by Surface-Enhanced Resonant Raman and infrared spectroscopies. The covalent linkage increases significantly the amount of silver grafted, resulting in an improvement of the system catalytic proficiency in the 4-nitrophenol (4-NP) photoreduction.

Molbank ◽  
10.3390/m1238 ◽  
2021 ◽  
Vol 2021 (2) ◽  
pp. M1238
Author(s):  
Ion Burcă ◽  
Valentin Badea ◽  
Calin Deleanu ◽  
Vasile-Nicolae Bercean

A new azo compound was prepared via the azo coupling reaction between 4-(ethoxycarbonyl)-3-methyl-1H-pyrazole-5-diazonium chloride and 8-hydroxyquinoline (oxine). The ester functional group of the obtained compound was hydrolyzed and thus a new chemical structure with a carboxylic functional group resulted. The structures of the new compounds were fully characterized by: UV–Vis, FT-IR, 1D and 2D NMR spectroscopy, and HRMS spectrometry.


Nanophotonics ◽  
2020 ◽  
Vol 9 (2) ◽  
pp. 295-308 ◽  
Author(s):  
Tomáš Neuman ◽  
Javier Aizpurua ◽  
Ruben Esteban

AbstractLocalised surface plasmons can couple strongly with the electronic transitions of a molecule, inducing new hybridised states of light and matter, the plasmon–exciton polaritons. Furthermore, molecules support vibrational degrees of freedom that interact with the electronic levels, giving rise to inelastic resonant Raman scattering under coherent laser illumination. Here we show the influence of strong plasmon–exciton coupling on resonant Raman processes that populate the vibrational states of the molecule and that lead to the characteristic surface-enhanced Raman scattering spectra. We develop analytical expressions that give insight into these processes for the case of moderate illumination intensity, weak electron–vibration coupling and no dephasing. These expressions help us to elucidate the twofold role of plasmon–exciton polaritons to pump the system efficiently and to enhance the Raman emission. Our results show a close analogy with the optomechanical process described for off-resonant Raman scattering but with a difference in the resonant reservoir. We also use full numerical calculations to study the effects reaching beyond these approximations and discuss the interplay between the fluorescence background and the Raman lines. Our results allow for better understanding and exploitation of the strong coupling regime in vibrational pumping and in the surface-enhanced resonant Raman scattering signal.


2000 ◽  
Vol 61 (19) ◽  
pp. 13202-13211 ◽  
Author(s):  
P. Corio ◽  
S. D. M. Brown ◽  
A. Marucci ◽  
M. A. Pimenta ◽  
K. Kneipp ◽  
...  

2010 ◽  
Vol 2010 ◽  
pp. 1-9 ◽  
Author(s):  
Muataz Ali Atieh ◽  
Omer Yehya Bakather ◽  
Bassam Al-Tawbini ◽  
Alaadin A. Bukhari ◽  
Faraj Ahmad Abuilaiwi ◽  
...  

The adsorption mechanism of the removal of lead from water by using carboxylic functional group (COOH) functionalized on the surface of carbon nanotubes was investigated. Four independent variables including pH, CNTs dosage, contact time, and agitation speed were carried out to determine the influence of these parameters on the adsorption capacity of the lead from water. The morphology of the synthesized multiwall carbon nanotubes (MWCNTs) was characterized by using field emission scanning electron microscopy (FESEM) and transmission electron microscopy (TEM) in order to measure the diameter and the length of the CNTs. The diameters of the carbon nanotubes were varied from 20 to 40 nm with average diameter at 24 nm and 10 micrometer in length. Results of the study showed that 100% of lead was removed by using COOH-MCNTs at pH 7, 150 rpm, and 2 hours. These high removal efficiencies were likely attributed to the strong affinity of lead to the physical and chemical properties of the CNTs. The adsorption isotherms plots were well fitted with experimental data.


2008 ◽  
Vol 80 (9) ◽  
pp. 1901-1908 ◽  
Author(s):  
Uwe Kortshagen ◽  
Rebeccah Anthony ◽  
Ryan Gresback ◽  
Zachary Holman ◽  
Rebekah Ligman ◽  
...  

The unique ability of nonthermal plasmas to form high-quality nanocrystals (NCs) of covalently bonded semiconductors, including the group IV elements silicon (Si) and germanium (Ge), has been extensively demonstrated over the past few years. Recently, plasma processing was also extended to the surface functionalization of NCs, imparting further functionalities to plasma-produced NCs such as solution-processability or the passivation of electronic surface states. This paper focuses on the synthesis and surface functionalization of Si- and Ge-NCs, and on their application in luminescent and photovoltaic devices.


Sign in / Sign up

Export Citation Format

Share Document