scholarly journals Tunable Optical Properties of Amorphous-Like Ga2O3 Thin Films Deposited by Electron-Beam Evaporation with Varying Oxygen Partial Pressures

Nanomaterials ◽  
2020 ◽  
Vol 10 (9) ◽  
pp. 1760
Author(s):  
Shijie Li ◽  
Chen Yang ◽  
Jin Zhang ◽  
Linpeng Dong ◽  
Changlong Cai ◽  
...  

Ga2O3 thin films were fabricated by the electron-beam evaporation technique at a varying oxygen partial pressure from 0 to 2.0 × 10−2 Pa. The effect of oxygen partial pressure on the crystalline structure and optical properties of the Ga2O3 films was analyzed using sophisticated techniques including X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD), Raman spectroscopy, spectroscopic ellipsometry, ultraviolet-visible spectroscopy and a laser-induced damage test system. The correlation between the oxygen partial pressure and the film’s properties in optics and materials were investigated. XRD and Raman revealed that all films were amorphous in spite of applying a varying oxygen partial pressure. With the change of oxygen partial pressure, XPS data indicated that the content of oxygen in the Ga2O3 films could be broadly modulable. As a result, a changeable refractive index of the Ga2O3 film is realizable and a variable blue-shift of absorption edges in transmittance spectra of the films is achievable. Moreover, the damage threshold value varied from 0.41 to 7.51 J/cm2 according to the rise of oxygen partial pressure. These results demonstrated that the optical properties of Ga2O3 film can be broadly tunable by controlling the oxygen content in the film.

1995 ◽  
Vol 10 (1) ◽  
pp. 26-33 ◽  
Author(s):  
L.M. Porter ◽  
R.F. Davis ◽  
J.S. Bow ◽  
M.J. Kim ◽  
R.W. Carpenter

Thin films (4–1000 Å) of Co were deposited onto n-type 6H-SiC(0001) wafers by UHV electron beam evaporation. The chemistry, microstructure, and electrical properties were determined using x-ray photoelectron spectroscopy, high resolution transmission electron microscopy, and I-V and C-V measurements, respectively. The as-deposited contacts exhibited excellent rectifying behavior with low ideality factors and leakage currents of n < 1.06 and 2.0 × 10−8 A/cm2 at −10 V, respectively. During annealing at 1000 °C for 2 min, significant reaction occurred resulting in the formation of CoSi and graphite. These annealed contacts exhibited ohmic-like character, which is believed to be due to defects created in the interface region.


2011 ◽  
Vol 383-390 ◽  
pp. 6289-6292
Author(s):  
Jian Ting He ◽  
Bo Xue Tan ◽  
Qin Qin Wei ◽  
Yuan Bin Su ◽  
Shu Lian Yang

ZnO thin films were deposited on n-Si (111) substrates at various oxygen partial pressures by pulsed laser deposition (PLD). X-ray diffraction (XRD), scanning electron microscopy (SEM) were used to analyze the influence of the oxygen partial pressure on the crystallization and morphology of the ZnO thin films. An optimal crystallized ZnO thin film was observed at the oxygen partial pressure of 6.5Pa. X-ray photoelectron spectroscopy (XPS) was used to analyze the surface components and distribution status of various elments in ZnO thin films. It was found that ZnO thin films were grown in Zn-rich state.


2021 ◽  
Vol 16 (5) ◽  
pp. 819-826
Author(s):  
Myeong Kyun Lyou ◽  
Hyunki Kim ◽  
SeoGwon Kim ◽  
Byung Seong Bae ◽  
Eui-Jung Yun

This study examined the effects of the oxygen partial pressure on the properties of heavily indium-doped tin-oxide (In-SnOx) thin films grown at room temperature by reactive direct-current pulse sputtering from a mixed metallic target containing Sn (70 atomic %)-In (30 atomic %). X-ray photoelectron spectroscopy (XPS), dynamic secondary-ion mass spectrometry, X-ray diffraction (XRD), and Hall Effect measurements showed that the In-SnOx samples prepared with oxygen pressures of 10–20% had metallic properties. This was attributed to the notable Sn0 area ranges of 5.6–17.3%, low resistivity ranges of 5.5×10−3–2×10−4 Ωcm, and the high carrier concentration ranges of 3.5×1021–5.1×1022/cm3. On the other hand, the Sn4+ area and the resistivity increased significantly to 73.3% and 9.4 Ωcm. In comparison, the Sn2+ area and the electron concentration decreased dramatically to 23.6% and 6.5×1016/cm3, respectively, with increasing oxygen partial pressure up to 30%. The samples prepared with oxygen pressures higher than 20% exhibited nonmetallic properties with the dominant n-type SnO2 phase. This steep increase in the Sn4+ area was attributed to an increase in the oxygen contents in the samples, resulting in a decrease in the number of oxygen vacancy donors in the samples prepared with oxygen pressures higher than 20%. The decrease in the Sn2+ area was related to a decrease in the indium (In) contents in the samples, which also decreased the number of metal acceptors in the samples. XRD also showed that the metallic indium stannide (In0.2Sn0.8) and In–Sn–O(ITO) peaks coexisted for samples prepared with an oxygen pressure of 0–10%. In contrast, the samples prepared with oxygen pressures higher than 20% had an amorphous structure with SnO2 and SnO phases, supporting the XPS and Hall Effect measurement results.


2012 ◽  
Vol 538-541 ◽  
pp. 116-119
Author(s):  
Bin Li ◽  
Ping Xie ◽  
Su Ying Zhang ◽  
Ding Quan Liu

Lead germanium telluride (Pb1-xGexTe), a pseudo-binary alloy of IV-VI narrow gap semiconductors PbTe and GeTe, is considered a potential mechanically robust high-index coating material. Pb1-xGexTe thin films were evaporated on silicon substrates from the ingots of single crystals using electron beam and resistance heating, respectively. The surface topographies and compositions of thin-films were characterized by using scanning electron microscopy (SEM) and energy dispersive X-ray analysis (EDX); the transmission spectra in a spectral range of 2.5~12 μm were also examined. Thin films demonstrated columnar microstructure; moreover, those evaporated using e-beam heating have much larger granular dimensions, in comparison with those using resistance heating. The measurement of transmittance reveals the advantage of perfect stoichiometry in e-beam evaporated thin films fails to improve optical properties. It can be deduced the scattering from the larger grains may impair the optical transparency. It can be concluded that electron beam evaporation is an optimum deposition choice.


2011 ◽  
Vol 383-390 ◽  
pp. 6293-6296 ◽  
Author(s):  
Jian Ting He ◽  
Bo Xue Tan ◽  
Yuan Bin Su ◽  
Shu Lian Yang ◽  
Qin Qin Wei

Highly c-axis oriented ZnO thin films were deposited on n-Si (111) substrate at various oxygen partial pressures by pulsed laser deposition (PLD). X-ray diffraction (XRD), Atomic force microscopy (AFM) were used to analyze the influence of the oxygen partial pressure on the crystallization and morphology of the ZnO thin films. X-ray photoelectron spectroscopy (XPS) was used to analyze relationships between chemical shifts of XPS energy spectra and stoichiometric ratios of ZnO thin films, and quantitative relationships between content of Zn, O and oxygen partial pressures. An optimal crystallized and stoichiometric ZnO thin film was observed at the oxygen partial pressure of 6.5Pa.


Sign in / Sign up

Export Citation Format

Share Document