scholarly journals Crystallization, Luminescence and Cytocompatibility of Hexagonal Calcium Doped Terbium Phosphate Hydrate Nanoparticles

Nanomaterials ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 322
Author(s):  
Jaime Gómez-Morales ◽  
Raquel Fernández-Penas ◽  
Ismael Romero-Castillo ◽  
Cristóbal Verdugo-Escamilla ◽  
Duane Choquesillo-Lazarte ◽  
...  

Luminescent lanthanide-containing biocompatible nanosystems represent promising candidates as nanoplatforms for bioimaging applications. Herein, citrate-functionalized calcium-doped terbium phosphate hydrate nanophosphors of the rhabdophane type were prepared at different synthesis times and different Ca2+/Tb3+ ratios by a bioinspired crystallization method consisting of thermal decomplexing of Ca2+/Tb3+/citrate/phosphate/carbonate solutions. Nanoparticles were characterized by XRD, TEM, SEM, HR-TEM, FTIR, Raman, Thermogravimetry, inductively coupled plasma spectroscopy, thermoanalysis, dynamic light scattering, electrophoretic mobility, and fluorescence spectroscopy. They displayed ill-defined isometric morphologies with sizes ≤50 nm, hydration number n ~ 0.9, tailored Ca2+ content (0.42–8.11 wt%), and long luminescent lifetimes (800–2600 µs). Their relative luminescence intensities in solid state are neither affected by Ca2+, citrate content, nor by maturation time for Ca2+ doping concentration in solution below 0.07 M Ca2+. Only at this doping concentration does the maturation time strongly affect this property, decreasing it. In aqueous suspensions, neither pH nor ionic strength nor temperature affect their luminescence properties. All the nanoparticles displayed high cytocompatibility on two human carcinoma cell lines and cell viability correlated positively with the amount of doping Ca2+. Thus, these nanocrystals represent promising new luminescent nanoprobes for potential biomedical applications and, if coupled with targeting and therapeutic moieties, they could be effective tools for theranostics.

2019 ◽  
Vol 16 (6) ◽  
pp. 462-467
Author(s):  
Songtao Li ◽  
Hongling Zhao ◽  
Zhifeng Yin ◽  
Shuhua Deng ◽  
Yang Gao ◽  
...  

A series of new phenanthrene-based tylophorine derivatives (PBTs) were synthesized in good yield and their structures were characterized by 1H-NMR spectroscopy and ESI MS. In vitro antitumor activity of these compounds against five human carcinoma cell lines, including HCT116 (colorectal), BGC-823 (gastric), HepG-2 (hepatic), Hela (cervical) and H460 (lung) cells, was evaluated by MTT assay. Among these PBTs, compound 6b showed the highest antitumor activities against HCT116 and HepG-2 cell lines with IC50 values of 6.1 and 6.4 μM, respectively, which were comparable to that of adriamycin hydrochloride. The structure-activity relationship of these compounds was also discussed based on the results of their antitumor activity.


2019 ◽  
Vol 16 (6) ◽  
pp. 663-669
Author(s):  
Dan Liu ◽  
Aiqi Xue ◽  
Zhixin Liu ◽  
Yi Zhang ◽  
Penghui Peng ◽  
...  

Background: Three series of new 7-fluoro-4-(1-piperazinyl) quinolines (I1~I6, II1~II2 and IV1~IV4) were synthesized. Their anti-tumor activity was evaluated in vitro against three human carcinoma cell lines, namely SGC-7901 cells, BEL-7402 cells and A549 cells expressing high levels of EGFR by Methyl Thiazolyl Terazolium (MTT) assay. Methods: Three series of quinoline derivatives were synthesized, characterized and evaluated for their in vitro anti-tumor activities. Results and Discussion: Structures of the newly synthesized compounds were confirmed by spectral analysis. The preliminary bioassay indicated that compounds I1, I10 and II1 exhibited better anti-tumor activity than the rest of the target compounds and gefitinib against A549 cell based assay, which demonstrated that compounds I1, I10 and II1 are potential agents for cancer therapy. Results suggested that the substitutes on piperazinyl influenced anti-tumor activities remarkably. Conclusion: These results are useful for discovering more potent novel anti-tumor compounds and further studies are ongoing.


Cell Calcium ◽  
1984 ◽  
Vol 5 (3) ◽  
pp. 309
Author(s):  
Gaby E. Pfyffer ◽  
Gisela Haemmerli ◽  
Peter Sträuli ◽  
Claus W. Heizmann

Cancer ◽  
1995 ◽  
Vol 75 (9) ◽  
pp. 2262-2268 ◽  
Author(s):  
Jannifer S. Stromberg ◽  
Yong J. Lee ◽  
Elwood P. Armour ◽  
Alvaro A. Martinez ◽  
Peter M. Corry

1996 ◽  
Vol 16 (1) ◽  
pp. 53-60 ◽  
Author(s):  
Elisa A. Spillare ◽  
Aikou Okamoto ◽  
Koichi Hagiwara ◽  
Douglas J. Demetrick ◽  
Manuel Serrano ◽  
...  

Oncogene ◽  
2000 ◽  
Vol 19 (4) ◽  
pp. 514-525 ◽  
Author(s):  
Torsten E Reichert ◽  
Shigeki Nagashima ◽  
Yoshiro Kashii ◽  
Joanna Stanson ◽  
Gui Gao ◽  
...  

2007 ◽  
Author(s):  
Judith Bergs ◽  
Jaap Haveman ◽  
Rosemarie Ten Cate ◽  
Jan Medema ◽  
Nicolaas Franken ◽  
...  

Marine Drugs ◽  
2019 ◽  
Vol 17 (8) ◽  
pp. 475 ◽  
Author(s):  
Elbanna ◽  
Khalil ◽  
Bernhardt ◽  
Capon

Chemical analysis of a cultivation of an Australian Mugil mullet gastrointestinal tract (GIT) derived fungus, Scopulariopsis sp. CMB-F458, yielded the known lipodepsipeptides scopularides A (1) and B (2). A comparative global natural product social (GNPS) molecular networking analysis of ×63 co-isolated fungi, detected two additional fungi producing new scopularides, with Beauveria sp. CMB-F585 yielding scopularides C–G (3–7) and Scopulariopsis sp. CMB-F115 yielding scopularide H (8). Structures inclusive of absolute configurations were assigned by detailed spectroscopic and C3 Marfey’s analysis, together with X-ray analyses of 3 and 8, and biosynthetic considerations. Scopularides A–H (1–8) did not exhibit significant growth inhibitory activity against a selection of Gram positive (+ve) and negative (−ve) bacteria, a fungus, or a panel of three human carcinoma cell lines.


Sign in / Sign up

Export Citation Format

Share Document