Metal-organic frameworks for drug delivery: Degradation mechanism and in vivo fate

Author(s):  
Ioanna Christodoulou ◽  
Christian Serre ◽  
Ruxandra Gref
Nanomaterials ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 722
Author(s):  
Ioanna Christodoulou ◽  
Tom Bourguignon ◽  
Xue Li ◽  
Gilles Patriarche ◽  
Christian Serre ◽  
...  

In recent years, Metal-Organic Frameworks (MOFs) have attracted a growing interest for biomedical applications. The design of MOFs should take into consideration the subtle balance between stability and biodegradability. However, only few studies have focused on the MOFs’ stability in physiological media and their degradation mechanism. Here, we investigate the degradation of mesoporous iron (III) carboxylate MOFs, which are among the most employed MOFs for drug delivery, by a set of complementary methods. In situ AFM allowed monitoring with nanoscale resolution the morphological, dimensional, and mechanical properties of a series of MOFs in phosphate buffer saline and in real time. Depending on the synthetic route, the external surface presented either well-defined crystalline planes or initial defects, which influenced the degradation mechanism of the particles. Moreover, MOF stability was investigated under different pH conditions, from acidic to neutral. Interestingly, despite pronounced erosion, especially at neutral pH, the dimensions of the crystals were unchanged. It was revealed that the external surfaces of MOF crystals rapidly respond to in situ changes of the composition of the media they are in contact with. These observations are of a crucial importance for the design of nanosized MOFs for drug delivery applications.


2018 ◽  
Vol 30 (37) ◽  
pp. 1870281 ◽  
Author(s):  
Teresa Simon-Yarza ◽  
Angelika Mielcarek ◽  
Patrick Couvreur ◽  
Christian Serre

2019 ◽  
Author(s):  
Michael A. Luzuriaga ◽  
Candace Benjamin ◽  
Michael W. Gaertner ◽  
Hamilton lee ◽  
Fabian C. Herbert ◽  
...  

<p>The emergence of drug delivery using water stable metal-organic frameworks has elicited a lot of interest in their biocompatibility. However, few studies have been conducted on their stability in common buffers, cell media, and blood proteins. For these studies, single crystal ZIF-8 approximately 1 um in diameter were synthesized, incubated with common laboratory buffers, cell media, and serum, and then characterized by PXRD, IR, DLS, and SEM. Time-resolved SEM and PXRD demonstrate that buffers containing phosphate and bicarbonate alter the appearance and composition of ZIF-8. Further, blood proteins in serum dissolve ZIF-8, causing trapped biomolecules to escape. The study presented here suggests that ZIF-8 can undergo dramatic surface chemistry changes that may affect the interpretation of cellular uptake and cargo release data. On the other hand, it provides a rational explanation as to how ZIF-8 neatly dissolves <i>in vivo</i>. </p>


2019 ◽  
Author(s):  
Michael A. Luzuriaga ◽  
Candace Benjamin ◽  
Michael W. Gaertner ◽  
Hamilton lee ◽  
Fabian C. Herbert ◽  
...  

<p>The emergence of drug delivery using water stable metal-organic frameworks has elicited a lot of interest in their biocompatibility. However, few studies have been conducted on their stability in common buffers, cell media, and blood proteins. For these studies, single crystal ZIF-8 approximately 1 um in diameter were synthesized, incubated with common laboratory buffers, cell media, and serum, and then characterized by PXRD, IR, DLS, and SEM. Time-resolved SEM and PXRD demonstrate that buffers containing phosphate and bicarbonate alter the appearance and composition of ZIF-8. Further, blood proteins in serum dissolve ZIF-8, causing trapped biomolecules to escape. The study presented here suggests that ZIF-8 can undergo dramatic surface chemistry changes that may affect the interpretation of cellular uptake and cargo release data. On the other hand, it provides a rational explanation as to how ZIF-8 neatly dissolves <i>in vivo</i>. </p>


2021 ◽  
Author(s):  
Monir Falsafi ◽  
Amir Shokooh Saljooghi ◽  
Khalil Abnous ◽  
Seyed Mohammad Taghdisi ◽  
Mohammad Ramezani ◽  
...  

Metal–organic frameworks (MOFs), as a prominent category of hybrid porous materials constructed from metal clusters or ions plus organic linkers, have been broadly employed as controlled systems of drug delivery...


RSC Advances ◽  
2020 ◽  
Vol 10 (73) ◽  
pp. 45130-45138
Author(s):  
Li Li ◽  
Shasha Han ◽  
Sengqun Zhao ◽  
Xurui Li ◽  
Bingmi Liu ◽  
...  

The drug delivery system of CS-MOF@5-FU was developed to achieve oral administration of 5-FU.


2021 ◽  
Author(s):  
Sirajunnisa P ◽  
Liz Hannah George ◽  
Narayanapillai Manoj ◽  
Prathapan S ◽  
G.S. Sailaja

Fluorescent biocompatible porous carriers have been investigated as suitable probes for drug delivery and sensing applications owing to their intrinsic fluorescence and high surface area originating from their porous structure...


Molecules ◽  
2020 ◽  
Vol 25 (6) ◽  
pp. 1291 ◽  
Author(s):  
Isobel Tibbetts ◽  
George Kostakis

Metal-organic frameworks (MOFs) have found uses in adsorption, catalysis, gas storage and other industrial applications. Metal Biomolecule Frameworks (bioMOFs) represent an overlap between inorganic, material and medicinal sciences, utilising the porous frameworks for biologically relevant purposes. This review details advances in bioMOFs, looking at the synthesis, properties and applications of both bioinspired materials and MOFs used for bioapplications, such as drug delivery, imaging and catalysis, with a focus on examples from the last five years.


RSC Advances ◽  
2021 ◽  
Vol 11 (18) ◽  
pp. 10540-10547
Author(s):  
Anxia Li ◽  
Xiaoxin Yang ◽  
Juan Chen

In this study, we reported a new approach for the size-controlled synthesis of uniform iron(iii)-based MIL-53 nanocrystals using the non-ionic surfactant PVP. A combinational therapeutic approach was presented for drug delivery and ROS therapy.


2021 ◽  
pp. 2100014
Author(s):  
Bhanu Nirosha Yalamandala ◽  
Wei‐Ting Shen ◽  
Sheng‐Hao Min ◽  
Wen‐Hsuan Chiang ◽  
Shing‐Jyh Chang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document