Flexible Porous Metal-Organic Frameworks for a Controlled Drug Delivery

2008 ◽  
Vol 130 (21) ◽  
pp. 6774-6780 ◽  
Author(s):  
Patricia Horcajada ◽  
Christian Serre ◽  
Guillaume Maurin ◽  
Naseem A. Ramsahye ◽  
Francisco Balas ◽  
...  
2021 ◽  
Author(s):  
Sirajunnisa P ◽  
Liz Hannah George ◽  
Narayanapillai Manoj ◽  
Prathapan S ◽  
G.S. Sailaja

Fluorescent biocompatible porous carriers have been investigated as suitable probes for drug delivery and sensing applications owing to their intrinsic fluorescence and high surface area originating from their porous structure...


Nanomaterials ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 722
Author(s):  
Ioanna Christodoulou ◽  
Tom Bourguignon ◽  
Xue Li ◽  
Gilles Patriarche ◽  
Christian Serre ◽  
...  

In recent years, Metal-Organic Frameworks (MOFs) have attracted a growing interest for biomedical applications. The design of MOFs should take into consideration the subtle balance between stability and biodegradability. However, only few studies have focused on the MOFs’ stability in physiological media and their degradation mechanism. Here, we investigate the degradation of mesoporous iron (III) carboxylate MOFs, which are among the most employed MOFs for drug delivery, by a set of complementary methods. In situ AFM allowed monitoring with nanoscale resolution the morphological, dimensional, and mechanical properties of a series of MOFs in phosphate buffer saline and in real time. Depending on the synthetic route, the external surface presented either well-defined crystalline planes or initial defects, which influenced the degradation mechanism of the particles. Moreover, MOF stability was investigated under different pH conditions, from acidic to neutral. Interestingly, despite pronounced erosion, especially at neutral pH, the dimensions of the crystals were unchanged. It was revealed that the external surfaces of MOF crystals rapidly respond to in situ changes of the composition of the media they are in contact with. These observations are of a crucial importance for the design of nanosized MOFs for drug delivery applications.


2020 ◽  
Vol 17 ◽  
Author(s):  
Ailing Feng ◽  
Yanni Wang ◽  
Jinzi Ding ◽  
Rong Xu ◽  
Xiaodong Li

Background: Development of controlled drug delivery systems can improve the pharmacokinetic characteristics of drug molecules in the human body, thereby significantly improving the utilization rate of drugs and reducing toxicity and side effects caused by high concentrations of drugs, which can occur when delivery is not controlled. Metal organic frameworks are a new class of very promising crystalline microporous materials, especially when the size is reduced to the nanometer range. Metal organic frameworks exhibit large specific surface areas, tunable compositions, and easy functionalization. In recent years, increasing number of studies have reported the remarkable advances in multifunctional nanoscale metal organic frameworks in drug delivery. Objective: Review the latest research involving advances in stimuli-responsive nanoscale metal organic frameworks as drug delivery systems in controlled-release drugs. Discussion: We first introduce the two main strategies associated with nanoscale metal organic frameworks used in drug loading: direct assembly and post-encapsulation. We next focus on the latest discoveries of nanoscale metal organic framework-based stimulus response systems for drug delivery, including pH, magnetics, light, ion, temperature, and other stimuli, as well as multiple stimulus-responsive drug delivery systems. Finally, we discuss the challenges and future development directions of nanoscale metal organic framework-based controlled drug release.


RSC Advances ◽  
2016 ◽  
Vol 6 (80) ◽  
pp. 76861-76866 ◽  
Author(s):  
Komal Sethi ◽  
Shalini Sharma ◽  
Indrajit Roy

We report the synthesis, characterisation, and magnetically controlled drug delivery applications of drug-encapsulated iron carboxylate nanoscale metal organic frameworks (NMOFs).


2021 ◽  
Author(s):  
Monir Falsafi ◽  
Amir Shokooh Saljooghi ◽  
Khalil Abnous ◽  
Seyed Mohammad Taghdisi ◽  
Mohammad Ramezani ◽  
...  

Metal–organic frameworks (MOFs), as a prominent category of hybrid porous materials constructed from metal clusters or ions plus organic linkers, have been broadly employed as controlled systems of drug delivery...


RSC Advances ◽  
2020 ◽  
Vol 10 (73) ◽  
pp. 45130-45138
Author(s):  
Li Li ◽  
Shasha Han ◽  
Sengqun Zhao ◽  
Xurui Li ◽  
Bingmi Liu ◽  
...  

The drug delivery system of CS-MOF@5-FU was developed to achieve oral administration of 5-FU.


Molecules ◽  
2020 ◽  
Vol 25 (6) ◽  
pp. 1291 ◽  
Author(s):  
Isobel Tibbetts ◽  
George Kostakis

Metal-organic frameworks (MOFs) have found uses in adsorption, catalysis, gas storage and other industrial applications. Metal Biomolecule Frameworks (bioMOFs) represent an overlap between inorganic, material and medicinal sciences, utilising the porous frameworks for biologically relevant purposes. This review details advances in bioMOFs, looking at the synthesis, properties and applications of both bioinspired materials and MOFs used for bioapplications, such as drug delivery, imaging and catalysis, with a focus on examples from the last five years.


RSC Advances ◽  
2021 ◽  
Vol 11 (18) ◽  
pp. 10540-10547
Author(s):  
Anxia Li ◽  
Xiaoxin Yang ◽  
Juan Chen

In this study, we reported a new approach for the size-controlled synthesis of uniform iron(iii)-based MIL-53 nanocrystals using the non-ionic surfactant PVP. A combinational therapeutic approach was presented for drug delivery and ROS therapy.


Sign in / Sign up

Export Citation Format

Share Document