scholarly journals Structural and Electrochemical Analysis of CIGS: Cr Crystalline Nanopowders and Thin Films Deposited onto ITO Substrates

Nanomaterials ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 1093
Author(s):  
Suzan Saber ◽  
Bernabé Marí ◽  
Andreu Andrio ◽  
Jorge Escorihuela ◽  
Nagwa Khattab ◽  
...  

A new approach for the synthesis of nanopowders and thin films of CuInGaSe2 (CIGS) chalcopyrite material doped with different amounts of Cr is presented. The chalcopyrite material CuInxGa1 − xSe2 was doped using Cr to form a new doped chalcopyrite with the structure CuInxCryGa1 − x − ySe2, where x = 0.4 and y = 0.0, 0.1, 0.2, or 0.3. The electrical properties of CuInx CryGa1 − x − ySe2 are highly dependent on the Cr content and results show these materials as promising dopants for the fabrication thin film solar cells. The CIGS nano-precursor powder was initially synthesized via an autoclave method, and then converted into thin films over transparent substrates. Both crystalline precursor powders and thin films deposited onto ITO substrates following a spin-coating process were subsequently characterized using XRD, SEM, HR-TEM, UV–visible and electrochemical impedance spectroscopy (EIS). EIS measurement was performed to evaluate the dc-conductivity of these novel materials as conductive films to be applied in solar cells.

2012 ◽  
Vol 4 (5) ◽  
pp. 573-576 ◽  
Author(s):  
Nima E. Gorji ◽  
Mauricio D. Perez ◽  
Ugo Reggiani ◽  
Leonardo Sandrolini

2008 ◽  
Vol 1091 ◽  
Author(s):  
Takashi Sagawa ◽  
Osamu Yoshikawa ◽  
Hirokuni Jintoku ◽  
Makoto Takafuji ◽  
Hirotaka Ihara ◽  
...  

AbstractMorphologically controllable thin-films of a zinc-containing tetraphenylporphyrin (ZnTPP) combined with an L-glutamide lipid has been fabricated and complexation of ZnTPP with fullerene was examined for organic thin-film solar cells, which gave 3 times enhancement of solar energy-to-electricity conversion efficiency through chlorobenzene-annealing in comparison with the conversion efficiency of untreated one.


2011 ◽  
Vol 2011 ◽  
pp. 1-10 ◽  
Author(s):  
Hongxia Wang

The research in thin film solar cells has been dominated by light absorber materials based on CdTe and Cu(In,Ga)Se2(CIGS) in the last several decades. The concerns of environment impact of cadmium and the limited availability of indium in those materials have driven the research towards developing new substitute light absorbers made from earth abundant, environment benign materials. Cu2ZnSnS4(CZTS) semiconductor material has emerged as one of the most promising candidates for this aim and has attracted considerable interest recently. Significant progress in this relatively new research area has been achieved in the last three years. Over 130 papers on CZTS have been published since 2007, and the majority of them are on the preparation of CZTS thin films by different methods. This paper, will review the wide range of techniques that have been used to deposit CZTS semiconductor thin films. The performance of the thin film solar cells using the CZTS material will also be discussed.


2010 ◽  
Vol 657 ◽  
pp. 191-207
Author(s):  
Sylvain Halindintwali ◽  
Dirk Knoesen ◽  
Basil A. Julies ◽  
Theo Muller ◽  
Christopher J. Arendse

This contribution discusses the deposition process and properties of intrinsic silicon thin films processed by the hot wire chemical vapour deposition technique. We review some fundamental characterization techniques that are used to probe into the quality of the material and thus decide its susceptibility to be used as the intrinsic layer in solar cells industry. This paper covers the optical, structural and electrical properties of the material. Results from UV-visible and IR spectroscopy, XRD and Raman scattering, X-section TEM as well as dark and photo-currents are given. It is shown that the thermal activation energy is a good measure of the quality of the sample.


2008 ◽  
Vol 51 ◽  
pp. 125-130 ◽  
Author(s):  
Rong Fuh Louh ◽  
Warren Wu

Chemical bath deposition (CBD) is a fairly simple synthetic route to prepare II-VI semicondutive zinc sulfide thin films, which can be prepared on the flat surface of glass or silicon wafer substrates in the solution containing the precursors of zinc and sulfur ions in terms of ambient conditions of varying acidity. This study particularly aims at the growth dependence and optical property of ZnS thin films in the CBD process by different experiment parameters, whereas we intend to choose suitable types of zinc ionic precursors to be coupled with various CBD parameters such as reaction temperature and time, precursor concentration, types and complexing agents as well as post-deposition heat treatment conditions. Addition of different concentration of ethylenediamine, ammonium sulfate, sodium citrate and hydrazine in the CBD reaction process was used to control the adequate growth rate of ZnS thin films. As a consequence, the rapid thermal annealing was employed to enhance the film uniformity and thickness evenness, transmittance and the energy gap of ZnS samples. The results would lead to a potential application of buffer layer for the Cu (In,Ga)Se2 based thin film solar cells. The analytic instrument including SEM, AFM, UV-VIS were used to examine the CBD-derived nanosized ZnS buffer layers for the thin film solar cells. The ZnS thin films prepared by the chemical bath deposition in this study results in film thickness of 80 ~ 100 nm, high transmittance of 80~85% and the energy gap of 3.89 ~ 3.98 eV.


Sign in / Sign up

Export Citation Format

Share Document